Journal of Computer Applications ›› 2024, Vol. 44 ›› Issue (12): 3808-3814.DOI: 10.11772/j.issn.1001-9081.2023121809
• Artificial intelligence • Previous Articles Next Articles
Received:2024-01-02
															
							
																	Revised:2024-04-12
															
							
																	Accepted:2024-04-18
															
							
							
																	Online:2024-06-13
															
							
																	Published:2024-12-10
															
							
						Contact:
								Xinrui ZENG   
													About author:ZHANG Qiye, born in 1975, Ph. D., associate professor. Her research interests include optimization theory, machine learning.				
													Supported by:通讯作者:
					曾心蕊
							作者简介:张奇业(1975—),女,河南洛阳人,副教授,博士,主要研究方向:最优化理论、机器学习;
				
							基金资助:CLC Number:
Qiye ZHANG, Xinrui ZENG. Efficient active-set method for support vector data description problem with Gaussian kernel[J]. Journal of Computer Applications, 2024, 44(12): 3808-3814.
张奇业, 曾心蕊. 带高斯核的支持向量数据描述问题的高效积极集法[J]. 《计算机应用》唯一官方网站, 2024, 44(12): 3808-3814.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2023121809
| 训练轮次 | 测试结果 | |||
|---|---|---|---|---|
| 圆心 | 半径 | 支持向量数 | 异常值数 | |
| 200 | (1.27,2.56) | 8.14 | 97 | 327 | 
| 1 000 | (0.89,1.50) | 7.55 | 98 | 277 | 
| 3 000 | (0.23,0.10) | 7.08 | 102 | 268 | 
Tab. 1 Test results in different training rounds
| 训练轮次 | 测试结果 | |||
|---|---|---|---|---|
| 圆心 | 半径 | 支持向量数 | 异常值数 | |
| 200 | (1.27,2.56) | 8.14 | 97 | 327 | 
| 1 000 | (0.89,1.50) | 7.55 | 98 | 277 | 
| 3 000 | (0.23,0.10) | 7.08 | 102 | 268 | 
| 数据集名称 | 正常 样本数 | 异常 样本数 | 训练集 样本数 | 测试集 样本数 | 维数 | 
|---|---|---|---|---|---|
| shuttle | 45 586 | 12 414 | 36 469 | 21 531 | 9 | 
| mammography | 7 595 | 254 | 6 076 | 1 773 | 10 | 
| a9a | 19 717 | 6 291 | 15 774 | 10 234 | 123 | 
| criteo | 45 840 617 | 6 042 135 | 41 506 202 | 10 376 550 | 1 000 000 | 
Tab. 2 Experimental datasets
| 数据集名称 | 正常 样本数 | 异常 样本数 | 训练集 样本数 | 测试集 样本数 | 维数 | 
|---|---|---|---|---|---|
| shuttle | 45 586 | 12 414 | 36 469 | 21 531 | 9 | 
| mammography | 7 595 | 254 | 6 076 | 1 773 | 10 | 
| a9a | 19 717 | 6 291 | 15 774 | 10 234 | 123 | 
| criteo | 45 840 617 | 6 042 135 | 41 506 202 | 10 376 550 | 1 000 000 | 
| 数据集 | 算法 | 测试集中识别得到的 异常值数 | 训练集对应目标函数值 | 训练集得到的支持向量数 | F1分数 | |||
|---|---|---|---|---|---|---|---|---|
| 数值 | 比FISVDD 降低百分比/% | 数值 | 比FISVDD 增加百分比/% | 数值 | 比FISVDD 提高百分比/% | |||
| shuttle | ASM-SVDD | 0 | 1.75395×10-3 | 25.91 | 1720 | 10.04 | 0.9669 | 0.01 | 
| FISVDD | — | 2.367 25×10-3 | — | 1 563 | — | 0.966 8 | — | |
| mammography | ASM-SVDD | 218 | 9.79150×10-3 | 6.69 | 312 | 2.30 | 0.5524 | 0.42 | 
| FISVDD | — | 1.049 37×10-2 | — | 305 | — | 0.550 1 | — | |
| a9a | ASM-SVDD | 0 | 1.69490×10-4 | 0.06 | 13541 | 4.64 | 0.6766 | 0.11 | 
| FISVDD | — | 1.694 91×10-4 | — | 12 941 | — | 0.675 8 | — | |
| criteo | ASM-SVDD | 23 957 | 8.56380×10-3 | 14.78 | 13748633 | 0.03 | 0.8735 | 0.07 | 
| FISVDD | — | 1.004 92×10-2 | — | 13 744 982 | — | 0.872 9 | — | |
Tab. 3 Experimental results comparison of ASM-SVDD and FISVDD algorithms on different datasets
| 数据集 | 算法 | 测试集中识别得到的 异常值数 | 训练集对应目标函数值 | 训练集得到的支持向量数 | F1分数 | |||
|---|---|---|---|---|---|---|---|---|
| 数值 | 比FISVDD 降低百分比/% | 数值 | 比FISVDD 增加百分比/% | 数值 | 比FISVDD 提高百分比/% | |||
| shuttle | ASM-SVDD | 0 | 1.75395×10-3 | 25.91 | 1720 | 10.04 | 0.9669 | 0.01 | 
| FISVDD | — | 2.367 25×10-3 | — | 1 563 | — | 0.966 8 | — | |
| mammography | ASM-SVDD | 218 | 9.79150×10-3 | 6.69 | 312 | 2.30 | 0.5524 | 0.42 | 
| FISVDD | — | 1.049 37×10-2 | — | 305 | — | 0.550 1 | — | |
| a9a | ASM-SVDD | 0 | 1.69490×10-4 | 0.06 | 13541 | 4.64 | 0.6766 | 0.11 | 
| FISVDD | — | 1.694 91×10-4 | — | 12 941 | — | 0.675 8 | — | |
| criteo | ASM-SVDD | 23 957 | 8.56380×10-3 | 14.78 | 13748633 | 0.03 | 0.8735 | 0.07 | 
| FISVDD | — | 1.004 92×10-2 | — | 13 744 982 | — | 0.872 9 | — | |
| 1 | VAPNIK V N, LERNER A Y. Recognition of patterns with help of generalized portraits [J]. Avtomatika i Telemekhanika, 1963, 24(6): 774-780. | 
| 2 | TAX D M J, DUIN R P W. Support vector data description [J]. Machine Learning, 2004, 54: 45-66. | 
| 3 | CHANG W C, LEE C P, LIN C J. A revisit to support vector data description [EB/OL]. [2023-09-02].. | 
| 4 | PLATT J. Sequential minimal optimization: a fast algorithm for training support vector machines [EB/OL]. [2023-09-04].. | 
| 5 | BOTTOU L, LIN C J. Support vector machine solvers [EB/OL]. [2023-09-03].. | 
| 6 | FAN R E, CHANG K W, HSIEH C J, et al. LIBLINEAR: a library for large linear classification[J]. Journal of Machine Learning Research, 2008, 9: 1871-1874. | 
| 7 | SCHEINBERG K. An efficient implementation of an active set method for SVMs[J]. Journal of Machine Learning Research, 2006, 7: 2237-2257. | 
| 8 | JIANG H, WANG H, HU W, et al. Fast incremental SVDD learning algorithm with the Gaussian kernel [C]// Proceedings of the 33rd AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2019: 3991-3998. | 
| 9 | ZHANG J, ZHANG Q, QIN X, et al. A two-stage fault diagnosis methodology for rotating machinery combining optimized support vector data description and optimized support vector machine [J]. Measurement, 2022, 200: No.111651. | 
| 10 | ZHAO Y P, XIE Y L, YE Z F. A new dynamic radius SVDD for fault detection of aircraft engine [J]. Engineering Applications of Artificial Intelligence, 2021, 100: No.104177. | 
| 11 | TAO X, CHEN W, ZHANG X, et al. SVDD boundary and DPC clustering technique-based oversampling approach for handling imbalanced and overlapped data [J]. Knowledge-Based Systems, 2021, 234: No.107588. | 
| 12 | TAO X, ZHENG Y, CHEN W, et al. SVDD-based weighted oversampling technique for imbalanced and overlapped dataset learning [J]. Information Sciences, 2022, 588: 13-51. | 
| 13 | WU X, LIU S, BAI Y. The manifold regularized SVDD for noisy label detection [J]. Information Sciences, 2023, 619: 235-248. | 
| 14 | 胡天杰,胡文军,王士同. 分布熵惩罚的支持向量数据描述[J]. 计算机应用, 2021, 41(8): 2212-2218. | 
| HU T J, HU W J, WANG S T. Distribution entropy penalized support vector data description [J]. Journal of Computer Applications, 2021, 41(8): 2212-2218. | |
| 15 | XIE W, LIANG G, GUO Q. A new improved FSVM algorithm based on SVDD [J]. Concurrency and Computation: Practice and Experience, 2019, 31(9): No.e4893. | 
| 16 | LI D, XU X, WANG Z, et al. Boundary-based Fuzzy-SVDD for one-class classification[J]. International Journal of Intelligent Systems, 2022, 37(3): 2266-2292. | 
| 17 | ALAM S, SONBHADRA S K, AGARWAL S, et al. Sample reduction using Farthest Boundary Point Estimation (FBPE) for Support Vector Data Description (SVDD) [J]. Pattern Recognition Letters, 2020, 131: 268-276. | 
| 18 | CHOU H Y, LIN P Y, LIN C J. Dual coordinate-descent methods for linear one-class SVM and SVDD [C]// Proceedings of the 2020 SIAM International Conference on Data Mining. Philadelphia, PA: SIAM, 2020: 181-189. | 
| 19 | CARLEVARO A, MONGELLI M. A new SVDD approach to reliable and explainable AI [J]. IEEE Intelligent Systems, 2022, 37(2): 55-68. | 
| 20 | ORR G B, MÜLLER K R. Neural networks: tricks of the trade, LNCS 1524 [M]. Berlin: Springer, 1998: 9-48. | 
| 21 | LASKOV P, GEHL C, KRÜGER S, et al. Incremental support vector learning: analysis, implementation and applications [J]. Journal of Machine Learning Research, 2006, 7: 1909-1936. | 
| 22 | WANG X, QU J, DI Y, et al. Fast online SVDD based on support vectors merging[C]// Proceedings of the 10th International Conference on Advanced Computational Intelligence. Piscataway: IEEE, 2018: 197-203. | 
| 23 | 刘红英,夏勇,周水生. 数学规划基础[M]. 北京:北京航空航天大学出版社, 2012:191-194. | 
| LIU H Y, XIA Y, ZHOU S S. Mathematical programming basics[M]. Beijing: Beihang University Press, 2012: 191-194. | |
| 24 | NOCEDAL J, WRIGHT S J. Numerical optimization [M]. New York: Springer, 1999: 467-480. | 
| 25 | GALLIER J. The Schur complement and symmetric positive semidefinite (and definite) matrices[EB/OL]. [2023-09-06].. | 
| 26 | 刘浩洋,户将,李勇峰,等. 最优化:建模、算法与理论[M]. 北京:高等教育出版社, 2020:184-193. | 
| LIU H Y, HU J, LI Y F, et al. Optimization: modeling, algorithm and theory [J]. Beijing: Higher Education Press, 2020: 184-193. | |
| 27 | CHANG C C, TSAI H C, LEE Y J. A minimum enclosing balls labeling method for support vector clustering [R]. Taipei, Taiwan: National Taiwan University of Science and Technology, 2007. | 
| 28 | DUA D, GRAFF C. UCI machine learning repository [DB/OL]. [2023-09-08].. | 
| 29 | WOODS K S, DOSS C C, BOWYER K W, et al. Comparative evaluation of pattern recognition techniques for detection of microcalcifications in mammography [J]. International Journal of Pattern Recognition and Artificial Intelligence, 1993, 7(6): 1417-1436. | 
| 30 | CHANG C C, LIN C J. LIBSVM: a library for support vector machines[J]. ACM Transactions on Intelligent Systems and Technology, 2011, 2(3): No.27. | 
| [1] | Yuhao TANG, Dezhong PENG, Zhong YUAN. Fuzzy multi-granularity anomaly detection for incomplete mixed data [J]. Journal of Computer Applications, 2024, 44(10): 3097-3104. | 
| [2] | Yiyang GUO, Jiong YU, Xusheng DU, Shaozhi YANG, Ming CAO. Outlier detection algorithm based on autoencoder and ensemble learning [J]. Journal of Computer Applications, 2022, 42(7): 2078-2087. | 
| [3] | HU Tianjie, HU Wenjun, WANG Shitong. Distribution entropy penalized support vector data description [J]. Journal of Computer Applications, 2021, 41(8): 2212-2218. | 
| [4] | MENG Fan, CHEN Guang, WANG Yong, GAO Yang, GAO Dequn, JIA Wenlong. Multi-granularity temporal structure representation based outlier detection method for prediction of oil reservoir [J]. Journal of Computer Applications, 2021, 41(8): 2453-2459. | 
| [5] | NING Jin, CHEN Leiting, LUO Zijuan, ZHOU Chuan, ZENG Huiru. Evaluation metrics of outlier detection algorithms [J]. Journal of Computer Applications, 2020, 40(9): 2622-2627. | 
| [6] | DU Xusheng, YU Jiong, YE Lele, CHEN Jiaying. Outlier detection algorithm based on graph random walk [J]. Journal of Computer Applications, 2020, 40(5): 1322-1328. | 
| [7] | NING Jin, CHEN Leiting, ZHOU Chuan, ZHANG Lei. Intelligent trigger mechanism for model aggregation and disaggregation [J]. Journal of Computer Applications, 2019, 39(6): 1614-1618. | 
| [8] | SHANG Fangxin, GUO Hao, LI Gang, ZHANG Ling. Novel image segmentation method with noise based on One-class SVM [J]. Journal of Computer Applications, 2019, 39(3): 874-881. | 
| [9] | TAO Tao, ZHOU Xi, MA Bo, ZHAO Fan. Abnormal time series data detection of gas station by Seq2Seq model based on bidirectional long short-term memory [J]. Journal of Computer Applications, 2019, 39(3): 924-929. | 
| [10] | YANG Chen, WANG Jieting, LI Feijiang, QIAN Yuhua. Support vector data description method based on probability [J]. Journal of Computer Applications, 2019, 39(11): 3134-3139. | 
| [11] | YUAN Zhong, FENG Shan. Outlier detection algorithm based on neighborhood value difference metric [J]. Journal of Computer Applications, 2018, 38(7): 1905-1909. | 
| [12] | YAN Hong, YANG Bo, YANG Hongyu. Outlier detection in time series data based on heteroscedastic Gaussian processes [J]. Journal of Computer Applications, 2018, 38(5): 1346-1352. | 
| [13] | SHI Bai, ZHUANG Jie, PANG Hong. Non-cooperative indoor human motion detection based on channel state information [J]. Journal of Computer Applications, 2017, 37(7): 1843-1848. | 
| [14] | ZOU Yunfeng, ZHANG Xin, SONG Shiyuan, NI Weiwei. Fast outlier detection algorithm based on local density [J]. Journal of Computer Applications, 2017, 37(10): 2932-2937. | 
| [15] | JIN Yan, PENG Xinguang. Composite classification model learned on multiple isolated subdomains for imbalanced class [J]. Journal of Computer Applications, 2016, 36(9): 2475-2480. | 
| Viewed | ||||||
| Full text |  | |||||
| Abstract |  | |||||
