[1] POTEMRA T A. The empirical connection of riometer absorption to solar protons during PCA events[J]. Radio Science, 2016, 7(5):571-577. [2] WESTERHUIS J A, KOURTI T, MACGREGOR J F. Analysis of multiblock and hierarchical PCA and PLS models[J]. Journal of Chemometrics, 2015, 12(5):301-321. [3] NAYAK D R, DASH R, MAJHI B. An improved pathological brain detection system based on two-dimensional PCA and evolutionary extreme learning machine[J]. Journal of Medical Systems, 2018, 42(1):19. [4] WANG Y, MA X, QIAN P. Wind turbine fault detection and identification through PCA-based optimal variable selection[EB/OL].[2017-11-15]. http://eprints.lancs.ac.uk/90197/1/PCA_fault_detection_and_identification_paper_TSTE_00148_2017_final.pdf. [5] CAO L J, CHUA K S, CHONG W K, et al. A comparison of PCA, KPCA and ICA for dimensionality reduction in support vector machine[J]. Neurocomputing, 2003, 55(1/2):321-336. [6] LI H, CHEN J, SHENG D, et al. Thermal parameters modeling method and sensor fault diagnosis based on KPCA-RBF network[J]. Journal of Vibration Measurement and Diagnosis, 2016, 36(6):1044-1049. [7] WANG X G, HUANG L W, ZHANG Y W. Modeling and monitoring of nonlinear multi-mode processes based on similarity measure-KPCA[J]. Journal of Central South University, 2017, 24(3):665-674. [8] HE Q P, WANG J. Fault detection using the k-nearest neighbor rule for semiconductor manufacturing processes[J]. IEEE Transactions on Semiconductor Manufacturing, 2007, 20(4):345-354. [9] KU W, STORER R H, GEORGAKIS C. Disturbance detection and isolation by dynamic principal component analysis[J]. Chemometrics and Intelligent Laboratory Systems, 1995, 30(1):179-196. [10] 齐咏生,王普,高学金,等.基于多阶段动态PCA的发酵过程故障监测[J].北京工业大学学报,2012,38(10):1474-1481.(QI Y S,WANG P,GAO X J,et al. Fault detetion for fermentation process based on multiphase dynamic PCA[J]. Journal of Beijing University of Technology, 2012,38(10):1474-1481.) [11] LEE J M, YOO C K, SANG W C, et al. Nonlinear process monitoring using kernel principal component analysis[J]. Chemical Engineering Science, 2004, 59(1):223-234. [12] MA H, HU Y, SHI H. A novel local neighborhood standardization strategy and its application in fault detection of multimode processes[J]. Chemometrics and Intelligent Laboratory Systems, 2012, 118(7):287-300. [13] MA H, HU Y, SHI H. Fault detection and identification based on the neighborhood standardized local outlier factor method[J]. Industrial and Engineering Chemistry Research, 2013, 52(6):2389-2402. [14] LI H-Z, TAO W, GAO T, et al. Improving the accuracy of Density Functional Theory (DFT) calculation for homolysis bond dissociation energies of Y-NO bond:generalized regression neural network based on grey relational analysis and principal component analysis[J]. International Journal of Molecular Sciences, 2011, 12(4):2242-2261. [15] RATO T J, REIS M S. Fault detection in the Tennessee Eastman benchmark process using Dynamic Principal Components Analysis based on Decorrelated Residuals (DPCA-DR)[J]. Chemometrics and Intelligent Laboratory Systems, 2013, 125(7):101-108. [16] 王蕾,陈进东,潘丰.引力搜索算法在青霉素发酵模型参数估计中的应用[J].计算机应用,2013,33(11):3296-3299.(WANG L, CHEN J D, PAN F. Applications of gravitational search algorithm in parameters estimation of penicillin fermentation process model[J]. Journal of Computer Applications, 2013, 33(11):3296-3299.) [17] 张成,李元.基于统计模量分析间歇过程故障检测方法研究[J].仪器仪表学报,2013,34(9):2103-2110.(ZHANG C, LI Y. Study on the fault-detection method in batch process based on statistical pattern analysis[J]. Chinese Journal of Scientific Instrument, 2013, 34(9):2103-2110.) [18] 李元,燕亚运,唐晓初.基于局部模型的多阶段在线产品质量预测[J].系统仿真学报,2016,28(4):966-971.(LI Y, YAN Y Y, TANG X C. Online product quality prediction for multi-phase based on local model[J]. Journal of System Simulation, 2016, 28(4):966-971.) |