[1] GARG S. Controls and health management technologies for intelligent aerospace propulsion systems[C]//Proceedings of the 42nd AIAA Aerospace Sciences Meeting and Exhibit. Reston, VA:AIAA,2004:No. 949. [2] 邓明, 金业壮. 航空发动机故障诊断[M]. 北京:北京航空航天大学出版社,2012:102-105. (DENG M,JIN Y Z. Aircraft Engine Fault Diagnosis[M]. Beijing:Beihang University Press, 2012:102-105.) [3] LU F,HUANG J,JI C,et al. Gas path on-line fault diagnostics using a nonlinear integrated model for gas turbine engines[J]. International Journal of Turbo and Jet-Engines,2014,31(3):261-275. [4] KOBAYASHI T,SIMON D L. Application of a bank of Kalman filters for aircraft engine fault diagnostics[R]. Washington,DC:National Aeronautics and Space Administration,2003. [5] HE C,ZHANG X,JIA B. UIO based robust fault diagnosis approach for aero-engine fiber-optic sensor[C]//Proceedings of the 2013 IEEE International Conference on Automation Science and Engineering. Piscataway:IEEE,2013:550-553. [6] 殷锴, 钟诗胜, 那媛, 等. 基于BP神经网络的航空发动机故障检测技术研究[J]. 航空发动机,2017,43(1):53-57.(YIN K, ZHONG S S,NA Y,et al. Research on aeroengine fault detection technology based on BP neural network[J]. Aeroengine,2017,43(1):53-57.) [7] QU H,HUANG Y. The research on aero-engine gas path fault diagnosis by genetic algorithm-BP neural network[J]. Hydraulics Engineering,2015,43(18):31-36. [8] 王小雷, 林学森, 杨欣毅. ELM在航空发动机气路部件故障诊断的应用研究[J]. 系统仿真技术,2016,12(2):106-110. (WANG X L,LIN X S,YANG X Y. Research on ELM application in aeroengine gas path components fault diagnosis[J]. System Simulation Technology,2016,12(2):106-110.) [9] 廖洪一. 基于极限学习机的航空发动机故障诊断研究[D]. 广汉:中国民用航空飞行学院,2016:1-75. (LIAO H Y. Research on aero-engine fault diagnosis based on extreme learning machine[D]. Guanghan:Civil Aviation Flight University of China,2016:1-75.) [10] ZHAO Y,HUANG G,HU Q,et al. Soft extreme learning machine for fault detection of aircraft engine[J]. Aerospace Science and Technology,2019,91:70-81. [11] CORTES C,VAPNIK V. Support-vector networks[J]. Machine Learning,1995,20(3):273-297. [12] 刘俊, 李鹏飞. 基于支持向量机的连续超声图像集分割算法[J]. 计算机应用,2017,37(7):2089-2094,2113. (LIU J,LI P F. Continuous ultrasound image set segmentation method based on support vector machine[J]. Journal of Computer Applications, 2017,37(7):2089-2094,2113.) [13] 陈云凤, 云挺, 周宇, 等. 基于PSO优化SVM的纹理图像分割[J]. 计算机应用与软件,2014,31(4):214-218.(CHEN Y F, YUN T,ZHOU Y,et al. Texture image segmentation based on PSO optimizing SVM[J]. Computer Applications and Software, 2014,31(4):214-218.) [14] 杨怀义. 支持向量机的多目标图像分割算法仿真研究[J]. 计算机仿真,2011,28(12):223-226. (YANG H Y. Segment objects from natural images using SVM[J]. Computer Simulation, 2011,28(12):223-226.) [15] 于真. 基于支持向量机的人脸识别技术研究[J]. 计算机仿真, 2011,28(12):296-299. (YU Z. Face recognition method based on support vector machine[J]. Computer Simulation,2011,28(12):296-299.) [16] 舒双宝, 罗家融, 徐从东, 等. 一种基于支持向量机的人脸识别新方法[J]. 计算机仿真,2011,28(2):280-283.(SHU S B, LUO J R,XU C D,et al. A new method of face recognition base on support vector machine[J]. Computer Simulation,2011,28(2):280-283.) [17] 吴青, 梁勃, 王婉, 等. 多分类光滑支持向量机的人脸识别方法[J]. 计算机应用,2015,35(S1):122-126.(WU Q,LIANG B, WANG W,et al. Face recognition method based on multi-class classification of smooth support vector machine[J]. Journal of Computer Applications,2015,35(S1):122-126.) [18] 李妍, 刘茂福, 姬东鸿. 基于支持向量机的中文文本蕴涵识别研究[J]. 计算机应用与软件,2014,31(4):51-55. (LI Y,LIU M F,JI D H. On SVM-based Chinese textual entailment recognition[J]. Computer Applications and Software,2014,31(4):51-55.) [19] 郭超磊, 陈军华. 基于SA-SVM的中文文本分类研究[J]. 计算机应用与软件,2019,36(3):277-281. (GUO C L,CHEN J H. Chinese text categorization based on SA-SVM[J]. Computer Applications and Software,2019,36(3):277-281.) [20] HENG H,ZHANG J,XIN C. Research on aircraft engine fault detection based on support vector machines[C]//Proceedings of the 2nd International Conference on Consumer Electronics,Communications and Networks. Piscataway:IEEE,2012:496-499. [21] 庄夏, 戴敏, 何元清. 基于改进粒子群优化LSSVM的飞机发动机故障诊断[J]. 实验技术与管理,2013,30(2):54-57. (ZHUANG X,DAI M,HE Y Q. Fault diagnosis for aero-engine based on improved particle swarm algorithm optimizing support vector machine[J]. Experimental Technology and Management, 2013,30(2):54-57.) [22] XI P,ZHAO Y,WANG P,et al. Least squares support vector machine for class imbalance learning and their applications to fault detection of aircraft engine[J]. Aerospace Science and Technology, 2019,84:56-74. [23] MAHADEVAN S,SHAH S L. Fault detection and diagnosis in process data using one-class support vector machines[J]. Journal of Process Control,2009,19(10):1627-1639. [24] YIN S,ZHU X,JING C. Fault detection based on a robust one class support vector machine[J]. Neurocomputing,2014,145:263-268. [25] 李琳, 尚文利, 姚俊, 等. 单类支持向量机在工业控制系统入侵检测中的应用研究综述[J]. 计算机应用研究,2016,33(1):7-11.(LI L,SHANG W L,YAO J,et al. Overview of one-class support vector machine in intrusion detection of industrial control system[J]. Application Research of Computers,2016,33(1):7-11.) [26] 刘万军, 秦济韬, 曲海成. 基于改进单类支持向量机的工业控制网络入侵检测方法[J]. 计算机应用,2018,38(5):1360-1365,1371. (LIU W J,QIN J T,QU H C. Intrusion detection algorithm of industrial control network based on improved one-class support vector machine[J]. Journal of Computer Applications, 2018,38(5):1360-1365,1371.) [27] YANG J,DENG T,SUI R. An adaptive weighted one-class SVM for robust outlier detection[C]//Proceedings of the 2015 Chinese Intelligent Systems Conference. Berlin:Springer,2015:475-484. [28] SCHÖLKOPF B,WILLIAMSON R,SMOLA A,et al. Support vector method for novelty detection[C]//Proceedings of the 12th International Conference on Neural Information Processing Systems. Cambridge:MIT Press,1999:582-588. [29] 常剑荻. 局部加权单类支持向量机研究[D]. 保定:河北大学, 2017:1-44. (CHANG J D. Research on locality weighting oneclass support vector machines[D]. Baodin:Hebei University, 2017:1-44.) [30] RODRIGUEZ A,LAIO A. Clustering by fast search and find of density peaks[J]. Science,2014,344(6191):1492-1496. [31] ZHU F,YANG J,GAO C,et al. A weighted one-class support vector machine[J]. Neurocomputing,2016, 189:1-10. [32] HOU T,LIU Y,WANG K,et al. A new weighted SVDD algorithm for outlier detection[C]//Proceedings of the 2016 Chinese Control and Decision Conference. Piscataway:IEEE,2016:5456- 5461. [33] CHEN Z,XU K,WEI J,et al. Voltage fault detection for lithiumion battery pack using local outlier factor[J]. Measurement, 2019,146:544-556. [34] LIU T F,TING K M,ZHOU Z. Isolation forest[C]//Proceedings of the 8th IEEE International Conference on Data Mining. Piscataway:IEEE,2008:413-422. [35] 李本威, 胡国才, 高国胜, 等. 涡轴发动机监视参数选择与诊断方法研究[J]. 航空动力学报,2002,17(2):160-164.(LI B W, HU G C,GAO G S,et al. Study of selecting parameters and fault diagnosis for turboshaft[J]. Journal of Aerospace Power,2002,17(2):160-164.) |