[1] WISE B M, GALLAGHER N B, BUTLER S W, et al. A comparison of principal component analysis, multiway principal component analysis, trilinear decomposition and parallel factor analysis for fault detection in a semiconductor etch process[J]. Journal of Chemometrics, 1999, 13(3/4):379-396. [2] CHERRY G A, QIN S J. Multiblock principal component analysis based on a combined index for semiconductor fault detection and diagnosis[J]. IEEE Transactions on Semiconductor Manufacturing, 2006, 19(2):159-172. [3] GE Z, SONG Z. Semiconductor manufacturing process monitoring based on adaptive substatistical PCA[J]. IEEE Transactions on Semiconductor Manufacturing, 2010, 23(1):99-108. [4] KRESTA J V, MACGREGOR J F, MARLIN T E. Multivariate statistical monitoring of process operating performance[J]. Canadian Journal of Chemical Engineering, 1991, 69(1):35-47. [5] ZHAO S J, ZHANG J, XU Y M. Performance monitoring of processes with multiple operating modes through multiple PLS models[J]. Journal of Process Control, 2006, 16(7):763-772. [6] KANO M, TANAKA S, HASEBE S, et al. Monitoring independent components for fault detection[J]. Aiche Journal, 2003, 49(4):969-976. [7] GE Z, SONG Z. Performance-driven ensemble learning ICA model for improved non-Gaussian process monitoring[J]. Chemometrics & Intelligent Laboratory Systems, 2013, 123(2):1-8. [8] GE Z, GAO F, SONG Z. Two-dimensional Bayesian monitoring method for nonlinear multimode processes[J]. Chemical Engineering Science, 2011, 66(21):5173-5183. [9] TEPPOLA P, MUJUNEN S P, MINKKINEN P. Adaptive fuzzy C-means clustering in process monitoring[J]. Chemometrics & Intelligent Laboratory Systems, 1999, 45(1/2):23-38. [10] YU J, QIN S J. Multimode process monitoring with Bayesian inference-based finite Gaussian mixture models[J]. Aiche Journal, 2008, 54(7):1811-1829. [11] YU J, QIN S J. Multiway gaussian mixture model based multiphase batch process monitoring[J]. Industrial & Engineering Chemistry Research, 2009, 48(18):8585-8594. [12] 张成,李秀玉,逄玉俊,等.基于GMM的马氏距离kNN故障检测方法研究[J].测控技术,2014,33(9):13-17.(ZHANG C, LI X Y, PANG Y J, et al. Mahalanobis distance kNN fault detection method based on Gaussian mixture model[J]. Measurement & Control Technology, 2014, 33(9):13-17.) [13] HWANG D H, HAN C. Real-time monitoring for a process with multiple operating modes[J]. Control Engineering Practice, 1999, 7(7):891-902. [14] LANE S, MARTIN E B, KOOIJMANS R, et al. Performance monitoring of a multi-product semi-batch process[J]. Journal of Process Control, 2001, 11(1):1-11. [15] HE Q P, WANG J. Fault detection using the k-nearest neighbor rule for semiconductor manufacturing processes[J]. IEEE Transactions on Semiconductor Manufacturing, 2007, 20(4):345-354. [16] ZHOU Z, WEN C, YANG C. Fault detection using random projections and k-nearest neighbor rule for semiconductor manufacturing processes[J]. IEEE Transactions on Semiconductor Manufacturing, 2015, 28(1):70-79. [17] HE Q P, WANG J. Principal component based k-nearest-neighbor rule for semiconductor process fault detection[C]//Proceedings of the 2008 American Control Conference. Piscataway, NJ:IEEE, 2008:1606-1611. [18] VERDIER G, FERREIRA A. Fault detection with an adaptive distance for the k-nearest neighbors rule[C]//Proceedings of the 2009 International Conference on Computers & Industrial Engineering. Piscataway, NJ:IEEE, 2009:1273-1278. [19] 冯立伟,张成,李元,等.基于局部马氏距离的加权k近邻故障检测方法[J].通化师范学院学报,2017,38(4):57-63.(FENG L W, ZHANG C, LI Y, et al. Local Mahalanobis distance based weighted k nearest neighbor rule for fault detection[J]. Journal of Tonghua Normal University, 2017, 38(4):57-63.) [20] 李元,李美萱,张成,等.基于局部临近标准化的FD-kNN故障检测[J].山东科技大学学报(自然科学版),2017,36(5):1-6.(LI Y, LI M X, ZHANG C, et al. FD-kNN fault detection based on local nearest neighborhood standardization[J]. Journal of Shandong University of Science and Technology (Natural Science), 2017, 36(5):1-6). [21] MA H, HU Y, SHI H. A novel local neighborhood standardization strategy and its application in fault detection of multimode processes[J]. Chemometrics & Intelligent Laboratory Systems, 2012, 118(7):287-300. [22] MA H, HU Y, SHI H. Fault detection and identification based on the neighborhood standardized local outlier factor method[J]. Industrial & Engineering Chemistry Research, 2013, 52(6):2389-2402. [23] 刘毅,王海清.Pensim仿真平台在青霉素发酵过程的应用研究[J].系统仿真学报,2006,18(12):3524-3527.(LIU Y, WANG H Q. Pensim simulator and its application in penicillin fermentation process[J]. Journal of System Simulation, 2006, 18(12):3524-3527.) [24] NG Y S, SRINIVASAN R. An adjoined multi-model approach for monitoring batch and transient operations[J]. Computers & Chemical Engineering, 2009, 33(4):887-900. [25] LEE J M, YOO C K, LEE I B. Fault detection of batch processes using multiway kernel principal component analysis[J]. Computers & Chemical Engineering, 2004, 28(9):1837-1847. |