[1] PETRAKIS I, HASS C, BICHLER M. On the impact of real-time information on field service scheduling[J]. Decision Support Systems, 2012, 53(2):282-293. [2] LESAINT D, VOUDOURIS C, AZARMI N. Dynamic workforce scheduling for British telecommunications PLC[J]. Interfaces, 2000, 30(1):45-56. [3] XU J Y, CHIU S Y. Effective heuristic procedures for a field technician scheduling problem[J]. Journal of Heuristics, 2001, 7(5):495-509. [4] AKJIRATIKARL C, YENRADEE P, DRAKE P R. PSO-based algorithm for home care worker scheduling in the UK[J]. Computers and Industrial Engineering, 2007, 53(4):559-583. [5] GOEL A, MEISEL F. Workforce routing and scheduling for electricity network maintenance with downtime minimization[J]. European Journal of Operational Research, 2013, 231(1):210-228. [6] 江俊杰,王丽亚.基于遗传算法的带服务匹配的现场产品服务调度[J].计算机集成制造系统,2012,18(11):2573-2577.(JIANG J J, WANG L Y. Field product service scheduling with service matching based on genetic algorithm[J]. Computer Integrated Manufacturing Systems, 2012, 18(11):2573-2577.) [7] XU Z, MING X G, ZHENG, M K, et al. Cross-trained workers scheduling for field service using improved NSGA-Ⅱ[J]. International Journal of Production Research, 2015, 53(4):1255-1272. [8] BORENSTEIN Y, SHAH N, TSANG E, et al. On the partitioning of dynamic workforce scheduling problems[J]. Journal of Scheduling, 2010, 13(4):411-425. [9] KOVACS A A, PARRAGH S N, DOERNER K F, et al. Adaptive large neighborhood search for service technician routing and scheduling problems[J]. Journal of Scheduling, 2012, 15(5):579-600. [10] DAMM R B, RESENDE M G C, RONCONI D P. A biased random key genetic algorithm for the field technician scheduling problem[J]. Computers and Operations Research, 2016, 75:49-63. [11] PILLAC V, GUÉRET C, MEDAGLIA A L. A parallel matheuristic for the technician routing and scheduling problem[J]. Optimization Letters, 2013, 7(7):1525-1535. [12] CORTÉS C E, GENDREAU M, ROUSSEAU L M, et al. Branch-and-price and constraint programming for solving a real-life technician dispatching problem[J]. European Journal of Operational Research, 2014, 238(1):300-312. [13] TANG Q, WILSON G R, PEREVALOV E. An approximation manpower planning model for after-sales field service support[J]. Computers and Operations Research, 2008, 35(11):3479-3488. [14] 曹永荣,韩传峰.售后现场服务排队近似M/G/m模型仿真[J].工业工程与管理,2009,14(5):103-107.(CAO Y R, HAN C F. Simulation for after-sales field service queuing approximation M/G/m model[J]. Industrial Engineering and Management, 2009, 14(5):103-107. [15] ZHANG Y, CUI G, WU J, et al. A novel multi-scale cooperative mutation fruit fly optimization algorithm[J]. Knowledge-Based Systems, 2016, 114:24-35. [16] HU R, WEN S, ZENG Z, et al. A short-term power load forecasting model based on the generalized regression neural network with decreasing step fruit fly optimization algorithm[J]. Neurocomputing, 2017, 221(C):24-31. [17] MENG T, PAN Q-K. An improved fruit fly optimization algorithm for solving the multidimensional knapsack problem[J]. Applied Soft Computing, 2017, 50(C):79-93. [18] ZHENG X L, WANG L. A two-stage adaptive fruit fly optimization algorithm for unrelated parallel machine scheduling problem with additional resource constraints[J]. Expert Systems with Applications, 2016, 65:28-39. [19] PAN W T. A new fruit fly optimization algorithm:taking the financial distress model as an example[J]. Knowledge-Based Systems, 2012, 26(2):69-74. [20] 吴斌,钱存华,董敏,等.具有同时集送货需求车辆路径问题的混沌量子进化算法研究[J].控制与决策,2010,25(3):383-388.(WU B, QIAN C H, DONG M, et al. Chaos quantum evolutionary algorithm for vehicle routing problem with simultaneous delivery and pickup[J]. Control and Decision, 2010, 25(3):383-388.) [21] The VRP Web. Instance[EB/OL].[2017-11-23]. http://www.bernabe.dorronsoro.es/vrp/index.html?/Problem_Instances/MDVRPTWInstances.html. |