[1] 潘文超.果蝇最佳化演算法[M].台北:沧海书局,2011:10-12.(PAN W T. Fruit Fly Optimization Algorithm[M]. Taipei:Tsang Hai Book Publishing, 2011:10-12.) [2] 吴小文,李擎.果蝇算法和5种群智能算法的寻优性能研究[J].火力与指挥控制,2013,38(4):17-20.(WU X W, LI Q. Research of optimizing performance of fruit fly optimization algorithm and five kinds of intelligent algorithm[J]. Fire Control & Command Control, 2013, 38(4):17-20.) [3] PAN W T. A new fruit fly optimization algorithm:taking the financial distress model as an example[J]. Knowledge-Based Systems, 2012, 26:69-74. [4] 潘文超.应用果蝇优化算法优化广义回归神经网络进行企业经营绩效评估[J].太原理工大学学报:社会科学版,2011,29(4):1-5.(PAN W T. Using fruit fly optimization algorithm optimized general regression neural network to construct the operating performance of enterprises model[J]. Journal of Taiyuan University of Technology (Social Sciences Edition), 2011, 29(4):1-5.) [5] 王欣,杜康,秦斌,等.基于果蝇优化算法的LSSVR干燥速率建模[J].控制工程,2012,19(4):630-633.(WANG X, DU K, QIN B, et al. Drying rate modeling based on FOALSSVR[J]. Control Engineering of China, 2012, 19(4):630-633.) [6] 刘成忠,黄高宝,张仁陟,等.局部深度搜索的混合果蝇优化算法[J].计算机应用,2014,34(4):1060-1064.(LIU C Z, HUANG G B, ZHANG R Z, et al. Shuffled fruit fly optimization algorithm with local deep search[J]. Journal of Computer Applications, 2014, 34(4):1060-1064.) [7] PAN Q K, SANG H Y, DUAN J H, et al. An improved fruit fly optimization algorithm for continuous function optimization problems[J]. Knowledge-Based Systems, 2014, 62:69-83. [8] 韩俊英,刘成忠.自适应调整参数的果蝇优化算法[J].计算机工程与应用,2014,50(7):50-55.(HAN J Y, LIU C Z, Fruit fly optimization algorithm with adaptive parameter[J]. Computer Engineering and Applications, 2014, 50(7):50-55.) [9] 华罗庚,王元.数论在近似分析中的应用[M].北京:科学出版,1978:83-84.(HUA L G, WANG Y. Number Theory in the Application of Approximate Analysis[M]. Beijing:Science Press, 1978:83-84.) [10] 张铃,张钹.佳点集遗传算法[J].计算机学报,2001,24(9):917-922.(ZHANG L, ZHANG B. Good point set based genetic algorithm[J]. Chinese Journal of Computers, 2001, 24(9):917-922.) [11] 龙文,梁昔明,徐松金,等.聚类佳点集交叉的约束优化混合进化算法[J].计算机研究与发展,2015,49(8):1753-1761.(LONG W, LIANG X M, XU S J, et al. A hybrid evolutionary algorithm based on clustering good-point set crossover for constrained optimization[J]. Journal of Computer Research and Development, 2015, 49(8):1753-1761.) [12] 吕振肃,侯志荣.自适应变异的粒子群优化算法[J].电子学报,2004,32(3):416-420.(LYU Z S, HOU Z R. Particle swarm optimization with adaptive mutation[J]. Acta Electronica Sinica, 2004, 32(3):416-420.) [13] 王凌.智能优化算法及其应用[M].北京:淸华大学出版社,2001:148-149.(WANG L. Intelligent Optimization Algorithm and Its Application[M]. Beijing:Tsinghua University Press, 2001:148-149.) [14] 李明,曹德欣.混合CS算法的DE算法[J].计算机工程与应用,2013,49(9):57-60.(LI M, CAO D X. Hybrid optimization algorithm of cuckoo search and DE[J]. Computer Engineering and Applications, 2013, 49(9):57-60.) [15] 林川,冯全源.一种新的自适应粒子群优化算法[J].计算机工程,2008,34(7):181-183.(LIN C, FENG Q Y. New adaptive particle swarm optimization algorithm[J]. Computer Engineering, 2008, 34(7):181-183. [16] 王联国,洪毅,施秋红.全局版人工鱼群算法[J].系统仿真学报,2009,21(23):7483-7502.(WANG L G, HONG Y, SHI Q H. Global edition artificial fish swarm algorithm[J]. Journal of System Simulation, 2009, 21(23):7483-7502.) |