[1] FRISTON K J, HOLMES A P, WORSLEY K J, et al. Statistical parametric maps in functional imaging:a general linear approach[J]. Human Brain Mapping, 1994, 2(4):189-210. [2] FRISTON K, JEZZARD P, TURNER R. Analysis of functional MRI time-series[J]. Human Brain Mapping, 1994, 1(2):15-171. [3] WORSLEY K J, LIAO C H, ASTON J, et al. A general statistical analysis for fMRI data[J]. Neuroimage, 2002, 15(1):1-15. [4] GOUTTE C, NIELSEN F, HANSEN L. Modeling the hemodynamic response in fMRI using smooth FIR filters[J]. IEEE Transactions on Medical Imaging, 2000, 19(12):1188-1201. [5] CASANOVA R, YANG L, HAIRSTON W D, et al. Evaluating the impact of spatio-temporal smoothness constraints on the BOLD hemodynamic response function estimation:an analysis based on Tikhonov regularization[J]. Physiological Measurement, 2009, 30(5):37-51. [6] ZHANG T, LI F, BECKES L, et al. A semi-parametric model of the hemodynamic response for multi-subject fMRI data[J]. Neuroimage, 2013, 75(4):136-145. [7] ZHANG T, LI F, GONZALEZ M Z, et al. A semi-parametric nonlinear model for event-related fMRI[J]. Neuroimage, 2014, 97(2):178-187. [8] VINCENT T, RISSER L, CIUCIU P. Spatially adaptive mixture modeling for analysis of fMRI time series[J]. IEEE Transanctions on Medical Imaging, 2010, 29(4):1059-1074. [9] MAKNI S, CIUCIU P, IDIER J, et al. Joint detection-estimation of brain activity in functional MRI:a multichannel deconvolution solution[J]. IEEE Transanctions on Signal Processing, 2005, 53(9):3488-3502. [10] MAKNI S, IDIER J, VINCENT T, et al. A fully Bayesian approach to the parcel-based detection-estimation of brain activity in fMRI[J]. Neuroimage, 2008, 41(3):941-969. [11] CHAARI L, FORBES F, VINCENT T, et al. Hemodynamic-informed parcellation of fMRI data in a joint detection estimation framework[C]//Proceedings of the 2012 International Conference on Medical Image Computing and Computer-Assisted Intervention, LNCS 7512. Berlin:Springer, 2012:180-188. [12] DEGRAS D, LINDQUIST M A. A hierarchical model for simultaneous detection and estimation in multi-subject fMRI studies[J]. Neuroimage, 2014, 98(7):61-72. [13] ZHANG L, GUINDANI M, VERSACE F, et al. A spatio-temporal nonparametric Bayesian variable selection model of fMRI data for clustering correlated time courses[J]. Neuroimage, 2014, 95(8):162-175. [14] ZHANG L, GUINDANI M, VERSACE F, et al. A spatiotemporal nonparametric Bayesian model of multi-subject fMRI data[J]. Annals of Applied Statistics, 2016, 10(2):638-666. [15] ZHANG T, PHAM M, SUN J, et al. A low-rank multivariate general linear model for multi-subject fMRI data and a non-convex optimization algorithm for brain response comparison[J]. Neuroimage, 2017, 173:580-591. [16] ARBABSHIRANI M R, HAVLICEK M, KIEHL K A, et al. Functional network connectivity during rest and task conditions:a comparative study[J]. Human Brain Mapping, 2013, 34(11):2959-2971. [17] CALHOUN V D, ADALI T. Unmixing fMRI with independent component analysis[J]. IEEE Engineering in Medicine and Biology Magazine, 2006, 25(2):79-90. [18] WAHBA G. Spline Models for Observational Data, CBMS-NSF Regional Conference Series in Applied Mathematics[M]. New York:Watson Research Center, 1990:59. [19] REISS P T, OGDEN R T. Functional principal component regression and functional partial least squares[EB/OL].[2018-02-03]. http://wiki.sfu.ca/research/datagroup/images/1/1e/Paper.pdf. [20] REISS P T, OGDEN R T. Smoothing parameter selection for a class of semiparametric linear models[J]. Journal of the Royal Statistical Society, 2009, 71(2):505-523. [21] WOOD S N. Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models[J]. Journal of the Royal Statistical Society, 2011, 73(1):3-36. [22] COAN J A. Adult attachment and the brain[J]. Journal of Social and Personal Relationships, 2010, 27(2):210-217. [23] COAN J. The Social Regulation of Emotion[M]. New York:Oxford University Press, 2011:614-623. [24] COAN J A, SCHAEFER H S, DAVIDSON R J. Lending a hand:social regulation of the neural response to threat[J]. Psychological Science, 2006, 17(12):1032-1039. |