Journal of Computer Applications ›› 2024, Vol. 44 ›› Issue (12): 3949-3957.DOI: 10.11772/j.issn.1001-9081.2023121764
• Frontier and comprehensive applications • Previous Articles Next Articles
					
						                                                                                                                                                                                                                                                                                                                    Yanran SHEN, Xin WEN, Jinhao ZHANG, Shuai ZHANG, Rui CAO, Baolu GAO( )
)
												  
						
						
						
					
				
Received:2023-12-21
															
							
																	Revised:2024-04-03
															
							
																	Accepted:2024-04-07
															
							
							
																	Online:2024-04-28
															
							
																	Published:2024-12-10
															
							
						Contact:
								Baolu GAO   
													About author:SHEN Yanran, born in 1997, M. S. candidate. Her research interests include brain science, deep learning.Supported by:通讯作者:
					高保禄
							作者简介:沈嫣然(1997—),女,山西长治人,硕士研究生,CCF会员,主要研究方向:脑科学、深度学习基金资助:CLC Number:
Yanran SHEN, Xin WEN, Jinhao ZHANG, Shuai ZHANG, Rui CAO, Baolu GAO. fMRI brain age prediction model with lightweight multi-scale convolutional network[J]. Journal of Computer Applications, 2024, 44(12): 3949-3957.
沈嫣然, 温昕, 张瑾昊, 张帅, 曹锐, 高保禄. 轻量级多尺度卷积网络的功能磁共振成像脑龄预测模型[J]. 《计算机应用》唯一官方网站, 2024, 44(12): 3949-3957.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2023121764
| 数据集 | 人数 | 年龄范围 | 年龄均值±方差 | 性别(男/女) | 
|---|---|---|---|---|
| E-NKI | 350 | 18~85 | 49.75±19.21 | 130/220 | 
| Cam-CAN | 640 | 18~87 | 54.29±18.52 | 315/325 | 
Tab. 1 Statistics of datasets
| 数据集 | 人数 | 年龄范围 | 年龄均值±方差 | 性别(男/女) | 
|---|---|---|---|---|
| E-NKI | 350 | 18~85 | 49.75±19.21 | 130/220 | 
| Cam-CAN | 640 | 18~87 | 54.29±18.52 | 315/325 | 
| 模型 | 参数文件 大小/MB | MAE | |
|---|---|---|---|
| E-NKI | Cam-CAN | ||
| ResNet18[ | 42.61 | 8.70 | 13.56 | 
| GoogLeNet[ | 23.98 | 7.46 | 11.72 | 
| MobileNetV3[ | 5.79 | 12.26 | 16.56 | 
| ShuffleNetV2[ | 4.79 | 11.93 | 15.18 | 
| LMCN | 2.30 | 5.16 | 5.97 | 
Tab. 2 Comparison experimental results of different models
| 模型 | 参数文件 大小/MB | MAE | |
|---|---|---|---|
| E-NKI | Cam-CAN | ||
| ResNet18[ | 42.61 | 8.70 | 13.56 | 
| GoogLeNet[ | 23.98 | 7.46 | 11.72 | 
| MobileNetV3[ | 5.79 | 12.26 | 16.56 | 
| ShuffleNetV2[ | 4.79 | 11.93 | 15.18 | 
| LMCN | 2.30 | 5.16 | 5.97 | 
| 模型 | 数据集 | 人数 | 年龄范围 | MAE | R | RMSE | 
|---|---|---|---|---|---|---|
| 文献[ | ADNI | 471 | 51~95 | 5.92 | 7.56 | |
| 文献[ | NKI | 125 | 12~85 | 5.14 | 0.875 | |
| 文献[ | Cam-CAN | 567 | 19~89 | 0.885 | 8.57 | |
| 文献[ | E-NKI | 496 | 6~85 | 6.50 | 0.910 | |
| 文献[ | 391 | 18~89 | 8.59 | 0.826 | 10.44 | |
| 本文模型 | E-NKI | 350 | 18~85 | 5.16 | 0.947 | 6.40 | 
| Cam-CAN | 640 | 18~87 | 5.97 | 0.904 | 7.93 | 
Tab. 3 Comparison of related studies
| 模型 | 数据集 | 人数 | 年龄范围 | MAE | R | RMSE | 
|---|---|---|---|---|---|---|
| 文献[ | ADNI | 471 | 51~95 | 5.92 | 7.56 | |
| 文献[ | NKI | 125 | 12~85 | 5.14 | 0.875 | |
| 文献[ | Cam-CAN | 567 | 19~89 | 0.885 | 8.57 | |
| 文献[ | E-NKI | 496 | 6~85 | 6.50 | 0.910 | |
| 文献[ | 391 | 18~89 | 8.59 | 0.826 | 10.44 | |
| 本文模型 | E-NKI | 350 | 18~85 | 5.16 | 0.947 | 6.40 | 
| Cam-CAN | 640 | 18~87 | 5.97 | 0.904 | 7.93 | 
| 消融后 性能情况 | 中文名 | 英文名 | 
|---|---|---|
| 预测 性能 变差 | 颞级:颞中回 | Temporal pole: middle temporal gyrus | 
| 楔前叶 | Precuneus | |
| 豆状苍白球 | Lenticular nucleus, pallidum | |
| 颞横回 | Heschl gyrus | |
| 嗅皮质 | Olfactory cortex | |
| 海马 | Hippocampus | |
| 角回 | Angular gyrus | |
| 岛盖部额下回 | Inferior frontal gyrus, opercular part | |
| 顶下缘角回 | Inferior parietal, but supramarginal and angular gyri | |
| 中央前回 | Precentral gyrus | |
| 杏仁核 | Amygdala | |
| 预测 性能 变好 | 缘上回 | Supramarginal gyrus | 
| 内侧额上回 | Superior frontal gyrus, medial | |
| 枕中回 | Middle occipital gyrus | 
Tab. 4 Brain regions with worse and better prediction performance after ablation
| 消融后 性能情况 | 中文名 | 英文名 | 
|---|---|---|
| 预测 性能 变差 | 颞级:颞中回 | Temporal pole: middle temporal gyrus | 
| 楔前叶 | Precuneus | |
| 豆状苍白球 | Lenticular nucleus, pallidum | |
| 颞横回 | Heschl gyrus | |
| 嗅皮质 | Olfactory cortex | |
| 海马 | Hippocampus | |
| 角回 | Angular gyrus | |
| 岛盖部额下回 | Inferior frontal gyrus, opercular part | |
| 顶下缘角回 | Inferior parietal, but supramarginal and angular gyri | |
| 中央前回 | Precentral gyrus | |
| 杏仁核 | Amygdala | |
| 预测 性能 变好 | 缘上回 | Supramarginal gyrus | 
| 内侧额上回 | Superior frontal gyrus, medial | |
| 枕中回 | Middle occipital gyrus | 
| 1 | GRADY C. The cognitive neuroscience of ageing[J]. Nature Reviews Neuroscience, 2012, 13(7): 491-505. | 
| 2 | DE LANGE A M G, ANATÜRK M, ROKICKI J, et al. Mind the gap: performance metric evaluation in brain-age prediction[J]. Human Brain Mapping, 2022, 43(10): 3113-3129. | 
| 3 | SMITH S M, ELLIOTT L T, ALFARO-ALMAGRO F, et al. Brain aging comprises many modes of structural and functional change with distinct genetic and biophysical associations [J]. eLife, 2020, 9: No.e52677. | 
| 4 | FRANKE K, GASER C. Ten years of BrainAGE as a neuroimaging biomarker of brain aging: what insights have we gained?[J]. Frontiers in Neurology, 2019, 10: No.789. | 
| 5 | COLE J H, FRANKE K. Predicting age using neuroimaging: innovative brain ageing biomarkers [J]. Trends in Neurosciences, 2017, 40(12): 681-690. | 
| 6 | GIANNAKOPOULOS P, MONTANDON M L, HERRMANN F R, et al. Alzheimer resemblance atrophy index, BrainAGE, and normal pressure hydrocephalus score in the prediction of subtle cognitive decline: added value compared to existing MR imaging markers [J]. European Radiology, 2022, 32(11): 7833-7842. | 
| 7 | CHERUBINI A, CALIGIURI M E, PÉRAN P, et al. Importance of multimodal MRI in characterizing brain tissue and its potential application for individual age prediction[J]. IEEE Journal of Biomedical and Health Informatics, 2016, 20(5): 1232-1239. | 
| 8 | LOGOTHETIS N K. The neural basis of the blood-oxygen-level-dependent functional magnetic resonance imaging signal[J]. Philosophical Transactions of the Royal Society of London Series B, 2002, 357: 1003-1037. | 
| 9 | EDLOW B L, CLAASSEN J, SCHIFF N D, et al. Recovery from disorders of consciousness: mechanisms, prognosis and emerging therapies [J]. Nature Reviews Neurology, 2020, 17(3): 135-156. | 
| 10 | 黄嘉爽,接标,丁卫平,等. 脑网络分析方法及其应用[J]. 数据采集与处理, 2021, 36(4): 648-663. | 
| HUANG J S, JIE B, DING W P, et al. Brain network analysis: method and application[J]. Journal of Data Acquisition and Processing, 2021, 36(4): 648-663. | |
| 11 | GREENE A S, GAO S, SCHEINOST D, et al. Task-induced brain state manipulation improves prediction of individual traits[J]. Nature Communications, 2018, 9: No.2807. | 
| 12 | ANDERSON N D. Cognitive neuroscience of aging[J]. The Journals of Gerontology: Series B, 2019, 74(7): 1083-1085. | 
| 13 | 范晨雨,李浩正,谢鸿宇,等. 基于功能性近红外光谱技术的健康青年人、老年人皮层脑网络静息态功能连接的特征研究 [J]. 中国康复医学杂志, 2021, 36(8):931-937, 942. | 
| FAN C Y, LI H Z, XIE H Y, et al. Healthy young and old adults functional connectivity among cortical networks: a resting-state functional near-infrared spectroscopy study [J]. Chinese Journal of Rehabilitation Medicine, 2021, 36(8):931-937, 942. | |
| 14 | GEERLIGS L, RENKEN R J, SALIASI E, et al. A brain-wide study of age-related changes in functional connectivity[J]. Cerebral Cortex, 2015, 25(7): 1987-1999. | 
| 15 | 刘涵慧,李会杰. 老化认知神经科学:研究现状与未来展望[J]. 中国科学:生命科学, 2021, 51(6):743-763. | 
| LIU H H, LI H J. Cognitive neuroscience of aging: present research status and future prospect [J]. SCIENTIA SINICA Vitae, 2021, 51(6):743-763. | |
| 16 | ZONNEVELD H I, PRUIM R H R, BOS D, et al. Patterns of functional connectivity in an aging population: the Rotterdam Study[J]. NeuroImage, 2019, 189: 432-444. | 
| 17 | MOWINCKEL A M, ESPESETH T, WESTLYE L T. Network-specific effects of age and in-scanner subject motion: a resting-state fMRI study of 238 healthy adults [J]. NeuroImage, 2012, 63(3): 1364-1373. | 
| 18 | YIN W, LI L, WU F X. Deep learning for brain disorder diagnosis based on fMRI images[J]. Neurocomputing, 2022, 469: 332-345. | 
| 19 | COLE J H, POUDEL R P K, TSAGKRASOULIS D, et al. Predicting brain age with deep learning from raw imaging data results in a reliable and heritable biomarker [J]. NeuroImage, 2017, 163: 115-124. | 
| 20 | LUNDERVOLD A S, LUNDERVOLD A. An overview of deep learning in medical imaging focusing on MRI [J]. Zeitschrift für Medizinische Physik, 2019, 29(2): 102-127. | 
| 21 | GONG W, BECKMANN C F, VEDALDI A, et al. Optimising a simple fully convolutional network for accurate brain age prediction in the PAC 2019 challenge [J]. Frontiers in Psychiatry, 2021, 12: No.627996. | 
| 22 | KHOSLA M, JAMISON K, KUCEYESKI A, et al. Ensemble learning with 3D convolutional neural networks for functional connectome-based prediction[J]. NeuroImage, 2019, 199: 651-662. | 
| 23 | GALAZZO I B, CRUCIANI F, BRUSINI L, et al. Explainable artificial intelligence for magnetic resonance imaging aging brainprints: grounds and challenges [J]. IEEE Signal Processing Magazine, 2022, 39(2): 99-116. | 
| 24 | GAO J, LIU J, XU Y, et al. Brain age prediction using the graph neural network based on resting-state functional MRI in Alzheimer's disease [J]. Frontiers in Neuroscience, 2023, 17: No.1222751. | 
| 25 | FISCH L, LEENINGS R, WINTER N R, et al. Editorial: predicting chronological age from structural neuroimaging: the Predictive Analytics Competition 2019[J]. Frontiers in Psychiatry, 2021, 12: No.710932. | 
| 26 | NOONER K B, COLCOMBE S J, TOBE R H, et al. The NKI-Rockland sample: a model for accelerating the pace of discovery science in psychiatry [J]. Frontiers in Neuroscience, 2012, 6: No.152. | 
| 27 | SHAFTO M A, TYLER L K, DIXON M, et al. The Cambridge Centre for Ageing and Neuroscience (Cam-CAN) study protocol: a cross-sectional, lifespan, multidisciplinary examination of healthy cognitive ageing [J]. BMC Neurology, 2014, 14: No.204. | 
| 28 | YAN C G, WANG X D, ZUO X N, et al. DPABI: data processing & analysis for (resting-state) brain imaging [J]. Neuroinformatics, 2016, 14(3): 339-351. | 
| 29 | SHEN H, WANG L, LIU Y, et al. Discriminative analysis of resting-state functional connectivity patterns of schizophrenia using low dimensional embedding of fMRI [J]. NeuroImage, 2010, 49(4): 3110-3121. | 
| 30 | LIU S, HUANG D, WANG Y. Receptive field block bet for accurate and fast object detection [C]// Proceedings of the 2018 European Conference on Computer Vision, LNCS 11215. Cham: Springer, 2018: 404-419. | 
| 31 | WANG P, CHEN P, YUAN Y, et al. Understanding convolution for semantic segmentation[C]// Proceedings of the 18th IEEE Winter Conference on Applications of Computer Vision. Piscataway: IEEE, 2018: 1451-1460. | 
| 32 | HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition [C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 770-778. | 
| 33 | FRANKE K, BUBLAK P, HOYER D, et al. In vivo biomarkers of structural and functional brain development and aging in humans[J]. Neuroscience and Biobehavioral Reviews, 2020, 117: 142-164. | 
| 34 | SZEGEDY C, LIU W, JIA Y, et al. Going deeper with convolutions [C]// Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2015: 1-9. | 
| 35 | HOWARD A, SANDLER M, CHEN B, et al. Searching for MobileNetV3[C]// Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2019:1314-1324. | 
| 36 | YE L. AugShuffleNet: communicate more, compute less[EB/OL]. [2023-12-01].. | 
| 37 | HAN H, GE S, WANG H. Prediction of brain age based on the community structure of functional networks [J]. Biomedical Signal Processing and Control, 2023, 79(Pt 2): No.104151. | 
| 38 | ZHAI J, LI K. Predicting brain age based on spatial and temporal features of human brain functional networks[J]. Frontiers in Human Neuroscience, 2019, 13: No.62. | 
| 39 | JIANG R, SCHEINOST D, ZUO N, et al. A neuroimaging signature of cognitive aging from whole-brain functional connectivity [J]. Advanced Science, 2022, 9(24): No.2201621. | 
| 40 | MILLAR P R, LUCKETT P H, GORDON B A, et al. Predicting brain age from functional connectivity in symptomatic and preclinical Alzheimer disease[J]. NeuroImage, 2022, 256: No.119228. | 
| 41 | 吕书悦,孙文悦,吴凡,等. 海马亚区在阿尔茨海默病中的研究进展[J]. 重庆医科大学学报, 2021, 46(11):1391-1394. | 
| LYU S Y, SUN W Y, WU F, et al. Advances in the study of hippocampal subregion in Alzheimer's disease [J]. Journal of Chongqing Medical University, 2021, 46(11): 1391-1394. | |
| 42 | HISCOX L V, SCHWARB H, McGARRY M D J, et al. Aging brain mechanics: progress and promise of magnetic resonance elastography [J]. NeuroImage, 2021, 232: No.117889. | 
| 43 | 徐家华,周莹,罗文波,等. 人类情绪发展认知神经科学:面向未来心理健康与教育[J]. 中国科学:生命科学, 2021, 51(6):663-678. | 
| XU J H, ZHOU Y, LUO W B, et al. Human developmental cognitive and affective neuroscience: future-oriented mental health and education[J]. SCIENTIA SINICA Vitae, 2021, 51(6):663-678. | |
| 44 | WASCHKE L, KLOOSTERMAN N A, OBLESER J, et al. Behavior needs neural variability [J]. Neuron, 2021, 109(5): 751-766. | 
| 45 | NAKAGAWA S, TAKEUCHI H, TAKI Y, et al. Lenticular nucleus correlates of general self-efficacy in young adults [J]. Brain Structure and Function, 2017, 222(7): 3309-3318. | 
| 46 | KONDO K, KIKUTA S, UEHA R, et al. Age-related olfactory dysfunction: epidemiology, pathophysiology, and clinical management [J]. Frontiers in Aging Neuroscience, 2020, 12: No.208. | 
| 47 | MAREK S, DOSENBACH U F. The frontoparietal network: function, electrophysiology, and importance of individual precision mapping [J]. Dialogues in Clinical Neuroscience, 2018, 20(2): 133-140. | 
| 48 | CASSADY K, RUITENBERG M F L, REUTER-LORENZ P A, et al. Neural dedifferentiation across the lifespan in the motor and somatosensory systems [J]. Cerebral Cortex, 2020, 30(6): 3704-3716. | 
| 49 | XUE C, SUN H, YUE Y, et al. Structural and functional disruption of salience network in distinguishing subjective cognitive decline and amnestic mild cognitive impairment[J]. ACS Chemical Neuroscience, 2021, 12(8): 1384-1394. | 
| 50 | PAN N, WANG S, QIN K, et al. Common and distinct neural patterns of attention-deficit/hyperactivity disorder and borderline personality disorder: a multimodal functional and structural meta-analysis [J]. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 2023, 8(6): 640-650. | 
| [1] | Yexin PAN, Zhe YANG. Optimization model for small object detection based on multi-level feature bidirectional fusion [J]. Journal of Computer Applications, 2024, 44(9): 2871-2877. | 
| [2] | Yunchuan HUANG, Yongquan JIANG, Juntao HUANG, Yan YANG. Molecular toxicity prediction based on meta graph isomorphism network [J]. Journal of Computer Applications, 2024, 44(9): 2964-2969. | 
| [3] | Shunyong LI, Shiyi LI, Rui XU, Xingwang ZHAO. Incomplete multi-view clustering algorithm based on self-attention fusion [J]. Journal of Computer Applications, 2024, 44(9): 2696-2703. | 
| [4] | Jing QIN, Zhiguang QIN, Fali LI, Yueheng PENG. Diagnosis of major depressive disorder based on probabilistic sparse self-attention neural network [J]. Journal of Computer Applications, 2024, 44(9): 2970-2974. | 
| [5] | Xiyuan WANG, Zhancheng ZHANG, Shaokang XU, Baocheng ZHANG, Xiaoqing LUO, Fuyuan HU. Unsupervised cross-domain transfer network for 3D/2D registration in surgical navigation [J]. Journal of Computer Applications, 2024, 44(9): 2911-2918. | 
| [6] | Yuhan LIU, Genlin JI, Hongping ZHANG. Video pedestrian anomaly detection method based on skeleton graph and mixed attention [J]. Journal of Computer Applications, 2024, 44(8): 2551-2557. | 
| [7] | Yanjie GU, Yingjun ZHANG, Xiaoqian LIU, Wei ZHOU, Wei SUN. Traffic flow forecasting via spatial-temporal multi-graph fusion [J]. Journal of Computer Applications, 2024, 44(8): 2618-2625. | 
| [8] | Qianhong SHI, Yan YANG, Yongquan JIANG, Xiaocao OUYANG, Wubo FAN, Qiang CHEN, Tao JIANG, Yuan LI. Multi-granularity abrupt change fitting network for air quality prediction [J]. Journal of Computer Applications, 2024, 44(8): 2643-2650. | 
| [9] | Yiqun ZHAO, Zhiyu ZHANG, Xue DONG. Anisotropic travel time computation method based on dense residual connection physical information neural networks [J]. Journal of Computer Applications, 2024, 44(7): 2310-2318. | 
| [10] | Song XU, Wenbo ZHANG, Yifan WANG. Lightweight video salient object detection network based on spatiotemporal information [J]. Journal of Computer Applications, 2024, 44(7): 2192-2199. | 
| [11] | Xun SUN, Ruifeng FENG, Yanru CHEN. Monocular 3D object detection method integrating depth and instance segmentation [J]. Journal of Computer Applications, 2024, 44(7): 2208-2215. | 
| [12] | Zheng WU, Zhiyou CHENG, Zhentian WANG, Chuanjian WANG, Sheng WANG, Hui XU. Deep learning-based classification of head movement amplitude during patient anaesthesia resuscitation [J]. Journal of Computer Applications, 2024, 44(7): 2258-2263. | 
| [13] | Huanhuan LI, Tianqiang HUANG, Xuemei DING, Haifeng LUO, Liqing HUANG. Public traffic demand prediction based on multi-scale spatial-temporal graph convolutional network [J]. Journal of Computer Applications, 2024, 44(7): 2065-2072. | 
| [14] | Zhi ZHANG, Xin LI, Naifu YE, Kaixi HU. DKP: defending against model stealing attacks based on dark knowledge protection [J]. Journal of Computer Applications, 2024, 44(7): 2080-2086. | 
| [15] | Yajuan ZHAO, Fanjun MENG, Xingjian XU. Review of online education learner knowledge tracing [J]. Journal of Computer Applications, 2024, 44(6): 1683-1698. | 
| Viewed | ||||||
| Full text |  | |||||
| Abstract |  | |||||