[1] SUI J, ADALI T, YU Q, et al. A review of multivariate methods for multimodal fusion of brain imaging data[J]. Journal of Neuroscience Methods, 2012, 204(1):68-81. [2] VEGANZONES M A, COHEN J E, FARIAS R C, et al. Nonnegative tensor CP decomposition of hyperspectral data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(5):2577-2588. [3] SHASHUA A, LEVIN A. Linear image coding for regression and classification using the tensor-rank principle[C]//CVPR 2001:Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington, DC:IEEE Computer Society, 2001,1:42-49. [4] BAUCKHAGE C. Robust tensor classifiers for color object recognition[C]//Proceedings of the 2007 International Conference Image Analysis and Recognition, LNCS 4633. Berlin:Springer, 2007:352-363. [5] FARIAS R C, COHEN J E, COMON P. Exploring multimodal data fusion through joint decompositions with flexible couplings[J]. IEEE Transactions on Signal Processing, 2016, 64(18):4830-4844. [6] BANERJEE A, BASU S, MERUGU S. Multi-way clustering on relation graphs[EB/OL].[2018-01-11]. https://www-users.cs.umn.edu/~baner029/papers/07/mrgc.pdf. [7] ACAR E, KOLDA T G, DUNLAVY D M. All-at-once optimization for coupled matrix and tensor factorizations[EB/OL].[2018-01-11]. http://www.sandia.gov/~dmdunla/publications/AcKoDu11.pdf. [8] ACAR E, LAWAETZ A J, RASMUSSEN M A, et al. Structure-revealing data fusion model with applications in metabolomics[C]//Proceedings of the 201335th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Piscataway, NJ:IEEE, 2013:6023-6026. [9] CARROLL J D, CHANG J J. Analysis of individual differences in multidimensional scaling via an n-way generalization of "Eckart-Young" decomposition[J]. Psychometrika, 1970, 35(3):283-319. [10] HARSHMAN R A. Foundations of the PARAFAC procedure:models and conditions for an "explanatory" multi-modal factor analysis[J]. UCLA Working Papers in Phonetics, 1970,16:1-84. [11] TUCKER L R. Implications of factor analysis of three-way matrices for measurement of change[J]. Problems in Measuring Change, 1963, 15:122-137. [12] SINGH A P, GORDON G J. Relational learning via collective matrix factorization[C]//KDD 2008:Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York:ACM, 2008:650-658. [13] BUCHANAN A M, FITZGIBBON A W. Damped Newton algo-rithms for matrix factorization with missing data[C]//CVPR 2005:Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington, DC:IEEE Computer Society, 2005, 2:316-322. [14] TOMASI G, BRO R. A comparison of algorithms for fitting the PARAFAC model[J]. Computational Statistics and Data Analysis, 2006, 50(7):1700-1734. [15] SMILDE A K, WESTERHUIS J A, BOQUE R. Multiway multiblock component and covariates regression models[J]. Journal of Chemometrics, 2015, 14(3):301-331. [16] KOLDA T G, BADER B W. Tensor decompositions and applications[C]//Proceedings of the 2003 IEEE Conference on Decision and Control. Piscataway, NJ:IEEE, 2004,1:640-645. [17] NOCEDAL J, WRIGHT S J. Numerical Optimization[M]. Berlin:Springer, 1999:327-330. [18] ACAR E, DUNLAVY D M, KOLDA T G. A scalable optimization approach for fitting canonical tensor decompositions[J]. Journal of Chemometrics, 2015, 25(2):67-86. |