1 |
McMAHAN H B, MOORE E, RAMAGE D, et al. Communication-efficient learning of deep networks from decentralized data [EB/OL].(2023-01-26) [2023-06-16]. .
|
2 |
梁天恺,曾碧,陈光.联邦学习综述:概念、技术、应用与挑战[J].计算机应用,2022,42(12):3651-3662.
|
|
LIANG T K, ZENG B, CHEN G. Federated learning survey: concepts, technologies, applications and challenges[J]. Journal of Computer Applications, 2022, 42(12): 3651-3662.
|
3 |
王腾,霍峥,黄亚鑫, 等. 联邦学习中的隐私保护技术研究综述[J].计算机应用,2023,43(2):437-449.
|
|
WANG T, HUO Z, HUANG Y X, et al. Review on privacy-preserving technologies in federated learning[J]. Journal of Computer Applications, 2023, 43(2): 437-449.
|
4 |
MOTHUKURI V, PARIZI R M, POURIYEH S, et al. A survey on security and privacy of federated learning[J]. Future Generation Computer Systems, 2021, 115:619-640.
|
5 |
YIN X, ZHU Y, HU J. A comprehensive survey of privacy-preserving federated learning[J]. ACM Computing Surveys, 2021,54(6): No. 131.
|
6 |
YANG Q, LIU Y, CHEN T J, et al. Federated machine learning: concept and applications[EB/OL].(2019-02-13) [2023-06-15]. .
|
7 |
YAN D, ZHAO Y, YANG Z, et al. FedCDR: privacy-preserving federated cross-domain recommendation[J]. Digital Communications and Networks, 2022, 8(4):552-560.
|
8 |
YUAN H, MA C, ZHAO Z, et al. A privacy-preserving oriented service recommendation approach based on personal data cloud and federated learning [C]// Proceedings of the 2022 IEEE International Conference on Web Services. Piscataway: IEEE, 2022:322-330.
|
9 |
CHENG Y, LIU Y, CHEN T, et al. Federated learning for privacy-preserving AI [J]. Communications of the ACM, 2020,63(12):33-36.
|
10 |
TEIMOORI Z, YASSINE A, HOSSAIN M S. A secure cloudlet-based charging station recommendation for electric vehicles empowered by federated learning[J]. IEEE Transactions on Industrial Informatics, 2022,18(9):6464-6473.
|
11 |
GE N, LI G, ZHANG L, et al. Failure prediction in production line based on federated learning: an empirical study [J]. Journal of Intelligent Manufacturing, 2022, 33: 2277-2294.
|
12 |
LIU L, ZHANG J, SONG S H, et al. Client-edge-cloud hierarchical federated learning [C]// Proceedings of the 2020 IEEE International Conference on Communications. Piscataway: IEEE, 2020:1-6.
|
13 |
ABAD M S H, OZFATURA E, GUNDUZ D, et al. Hierarchical federated learning across heterogeneous cellular networks[C]// Proceedings of the 2020 IEEE International Conference on Acoustics, Speech and Signal Processing. Piscataway: IEEE, 2020:8866-8870.
|
14 |
WANG Z, XU H, LIU J, et al. Accelerating federated learning with cluster construction and hierarchical aggregation[J]. IEEE Transactions on Mobile Computing, 2023, 22(7): 3805-3822.
|
15 |
WU J, LIU Q, HUANG Z, et al.Hierarchical personalized federated learning for user modeling[C]// Proceedings of the Web Conference 2021. New York: ACM, 2021:957-968.
|
16 |
LEE H, KIM J, HUSSAIN R, et al.On defensive neural networks against inference attack in federated learning[C]// Proceedings of the 2021 IEEE International Conference on Communications. Piscataway: IEEE, 2021: 1-6.
|
17 |
AONO Y, HAYASHI T, PHONG L T, et al. Scalable and secure logistic regression via homomorphic encryption[C]// Proceedings of the 6th ACM Conference on Data and Application Security and Privacy. New York: ACM, 2016:142-144.
|
18 |
LUO X, WU Y, XIAO X, et al. Feature inference attack on model predictions in vertical federated learning[C]// Proceedings of the 2021 IEEE 37th International Conference on Data Engineering. Piscataway: IEEE, 2021:181-192.
|
19 |
WAINAKH A, VENTOLA F, MÜßIG T, et al. User-level label leakage from gradients in federated learning [EB/OL]. (2022-01-03) [2023-06-01]. .
|
20 |
NASR M, SHOKRI R, HOUMANSADR A.Comprehensive privacy analysis of deep learning: passive and active white-box inference attacks against centralized and federated learning[C]// Proceedings of the 2019 IEEE Symposium on Security and Privacy. Piscataway: IEEE, 2019:739-753.
|
21 |
DONG Y, SU H, WU B, et al. Efficient decision-based black-box adversarial attacks on face recognition[C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019:7706-7714.
|
22 |
SHOKRI R, STRONATI M, SONG C, et al. Membership inference attacks against machine learning models[C]// Proceedings of the 2017 IEEE Symposium on Security and Privacy. Piscataway: IEEE, 2017: 3-18.
|
23 |
RAHIMIAN S, OREKONDY T, FRITZ M. Sampling attacks: amplification of membership inference attacks by repeated queries[EB/OL]. (2020-09-01) [2023-06-17]. .
|
24 |
TRUEX S, LIU L, GURSOY M E, et al. Effects of differential privacy and data skewness on membership inference vulnerability[C]// Proceedings of the 2019 First IEEE International Conference on Trust, Privacy and Security in Intelligent Systems and Applications. Piscataway: IEEE, 2019: 82-91.
|
25 |
KAYA Y, DUMITRAS T. When does data augmentation help with membership inference attacks? [C]// Proceedings of the 38th International Conference on Machine Learning. New York: PMLR, 2021: 5345-5355.
|
26 |
SALEM A, ZHANG Y, HUMBERT M, et al. ML-Leaks: model and data independent membership inference attacks and defenses on machine learning models[EB/OL]. [2023-06-18]. .
|