[1] 何琳,张权,上官宏,等.自适应加权全变分的低剂量CT统计迭代算法[J].计算机应用,2016,36(10):2916-2921.(HE L, ZHANG Q, SHANGGUAN H, et al. Statistical iterative algorithm based on adaptive weighted total variation for low-dose CT[J]. Journal of Computer Applications, 2016, 36(10):2916-2921.) [2] 何琳,张权,上官宏,等.低剂量CT图像的自适应广义总变分降噪算法[J].计算机应用,2016,36(1):243-247.(HE L, ZHANG Q, SHANGGUAN H, et al. Adaptive total generalized variation denoising algorithm for low-dose CT images[J]. Journal of Computer Applications, 2016, 36(1):243-247.) [3] BUADES A, COLL B, MOREL J-M. A non-local algorithm for image denoising[C]//Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Piscataway, NJ:IEEE, 2005:60-65. [4] ZHUANG Z K, CHEN Y, SHU H Z, et al. Fast low-dose CT image processing using improved parallelized nonlocal means filtering[C]//Proceedings of the 2014 International Conference on Medical Biometrics. Piscataway, NJ:IEEE, 2014:147-150. [5] CHEN Y, YANG Z, HU Y N, et al. Thoracic low-dose CT image processing using an artifact suppressed large-scale nonlocal means[J]. Physics in Medicine and Biology, 2012, 57(9):2667-2688. [6] DABOV K, FOI A, KATKOVNIK V, et al. Image denoising by sparse 3-D transform-domain collaborative filtering[J]. IEEE Transactions on Image Processing, 2007, 16(8):2080-2095. [7] AHARON M, ELAD M, BRUCKSTEIN A. The K-SVD:an algorithm for designing overcomplete dictionaries for sparse representation[J]. IEEE Transactions on Signal Processing, 2006, 54(11):4311-4322. [8] LIU Y, CASTRO M, LEDERLIN M, et al. Edge-preserving denoising for intra-operative cone beam CT in endovascular aneurysm repair[J]. Computerized Medical Imaging and Graphics, 2017, 56:49-59. [9] LIU Y, SHANGGUAN H, ZHANG Q, et al. Median prior constrained TV algorithm for sparse view low-dose CT reconstruction[J]. Computers in Biology and Medicine, 2015, 60:117-131. [10] LIU Y, GUI Z, ZHANG Q. Noise reduction for low-dose X-ray CT based on fuzzy logical in stationary wavelet domain[J]. International Journal for Light and Electron Optics, 2013, 124(18):3348-3352. [11] KE L, ZHANG R. Multiscale Wiener filtering method for low-dose CT images[C]//Proceedings of the 20103rd International Conference on Biomedical Engineering and Informatics. Piscataway, NJ:IEEE, 2010:428-431. [12] 黄建招,谢建,高钦和,等.基于离散平稳小波的改进自适应降噪方法[J].仪表技术与传感器,2012(11):166-168,171.(HUANG J Z, XIE J, GAO Q H, et al. Improved self-adaptive de-noising method based on discrete stationary wavelet transform[J]. Instrument Technique and Sensor, 2012(11):166-168, 171.) [13] 杨勇,郭吉强.Lipschitz指数与平稳小波变换在CT图像去噪中的应用[J].计算机工程与应用,2012,48(6):190-192.(YANG Y, GUO J Q. Application of Lipschitz exponent and SWT for denoising of CT image[J]. Computer Engineering and Applications, 2012, 48(6):190-192.) [14] 朱俊鹏,赵洪利,杨海涛.基于卷积神经网络的视差图生成技术[J].计算机应用,2018,38(1):255-259.(ZHU J P, ZHAO H L, YANG H T. Disparity map generation technology based on convolutional neural network[J]. Journal of Computer Applications, 2018, 38(1):255-259.) [15] 董峻妃,郑伯川,杨泽静.基于卷积神经网络的车牌字符识别[J].计算机应用,2017,37(7):2014-2018.(DONG J F, ZHENG B C,YANG Z J. Character recognition of license plate based on convolution neural network[J]. Journal of Computer Applications, 2017, 37(7):2014-2018.) [16] WANG T Y, QIN Z R, ZHU M. An ELU network with total variation for image denoising[C]//Proceedings of the 2017 International Conference on Neural Information Processing. Berlin:Springer, 2017:227-237. [17] WAND X, TAO Q Y, WANG L H, et al. Deep convolutional architecture for natural image denoising[C]//Proceedings of the 2015 International Conference on Wireless Communications and Signal Processing. Piscataway, NJ:IEEE, 2015:1-4. [18] ZHANG F, CAI N, WU J X, et al. Image denoising method based on a deep convolution neural network[J]. IET Image Processing, 2018, 12(4):485-493. [19] CHEN H, ZHANG Y, ZHANG W H, et al. Low-dose CT via convolutional neural network[J]. Biomedical Optics Express, 2017, 8(2):679-694. [20] CHEN H, ZHANG Y, KALRA M K, et al. Low-dose CT with a Residual Encoder-Decoder Convolutional Neural Network (RED-CNN)[J]. IEEE Transactions on Medical Imaging, 2017, 36(12):2524-2535. [21] IOFFE S, SZEGEDY C. Batch normalization:accelerating deep network training by reducing internal covariate Shift[C]//Proceedings of the 201532nd International Conference on Machine Learning. Cambridge, MA:MIT Press, 2015:448-456. [22] NAIR V, HINTON G E. Rectified linear units improve restricted Boltzmann machines[C]//Proceedings of the 201027th International Conference on International Conference on Machine Learning. Madison, WI:Omnipress, 2010:807-814. [23] HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway, NJ:IEEE, 2016:770-778. [24] SIMONVAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[EB/OL].[2018-03-16]. https://arxiv.org/pdf/1409.1556.pdf. |