[1] 王丽君,淮永建,彭月橙.基于叶片图像多特征融合的观叶植物种类识别[J].北京林业大学学报,2015,37(1):55-61.(WANG L J, HUAI Y J, PENG Y C. Method of identification of foliage from plants based on extraction of multiple features of leaf images[J]. Journal of Beijing Forestry University, 2015, 37(1):55-61.) [2] ZHU F, YANG J, XU S, et al. Relative density degree induced boundary detection for one-class SVM[J]. Soft Computing, 2016, 20(11):1-13. [3] YAN H, YE Q, ZHANG T, et al. Least squares twin bounded support vector machines based on L1-norm distance metric for classification[J]. Pattern Recognition, 2017, 74:434-447. [4] YE Q, ZHAO C, YE N, et al. Multi-weight vector projection support vector machines[J]. Pattern Recognition Letters, 2014, 42(13):91-100. [5] YE Q, ZHAO C, GAO S, et al. Weighted twin support vector machines with local information and its application[J]. Neural Networks, 2012, 35(11):31-39. [6] 邓立苗,唐俊,马文杰.基于图像处理的玉米叶片特征提取与识别系统[J]. 中国农机化学报, 2014, 35(6):72-75, 79.(DENG L M, TANG J, MA W J. Feature extraction and recognition system of maize leaf based on image processing[J]. Journal of Chinese Agricultural Mechanization, 2014, 35(6):72-75, 79.) [7] NARESH Y G, NAGENDRASWAMY H S. Classification of medicinal plants:an approach using modified LBP with symbolic representation[J]. Neurocomputing, 2016, 173:1789-1797. [8] CHAKI J, PAREKH R, BHATTACHARYA S. Plant leaf recognition using texture and shape features with neural classifiers[J]. Pattern Recognition Letters, 2015, 58(C):61-68. [9] JIN T, HOU X, LI P, et al. A novel method of automatic plant species identification using sparse representation of leaf tooth features[J]. Plos One, 2015, 10(10):e0139482. [10] OLSEN A, HAN S, CALVERT B, et al. In Situ leaf classification using histograms of oriented gradients[C]//Proceedings of the 2015 International Conference on Digital Image Computing:Techniques and Applications. Piscataway, NJ:IEEE, 2016:1-8. [11] GHASAB M A J, KHAMIS S, MOHAMMAD F, et al. Feature decision-making ant colony optimization system for an automated recognition of plant species[J]. Expert Systems with Applications, 2015, 42(5):2361-2370. [12] LECUN Y, BENGIO Y, HINTON G. Deep learning[J]. Nature, 2015, 521(7553):436. [13] LECUN Y, BENGIO Y. Convolutional Networks for Images, Speech, and Time Series[M]. Cambridge, MA:MIT Press, 1998:255-258. [14] LIU Y, TANG F, ZHOU D, et al. Flower classification via convolutional neural network[C]//Proceedings of the 2016 IEEE International Conference on Functional-Structural Plant Growth Modeling, Simulation, Visualization and Applications. Piscataway, NJ:IEEE, 2017:110-116. [15] GRINBLAT G L, UZAL L C, LARESE M G, et al. Deep learning for plant identification using vein morphological patterns[J]. Computers & Electronics in Agriculture, 2016, 127:418-424. [16] BARRÉ P, STÖVER B C, KAI F M, et al. LeafNet:a computer vision system for automatic plant species identification[J]. Ecological Informatics, 2017, 40:50-56. [17] PAWARA P, OKAFOR E, SURINTA O, et al. Comparing local descriptors and bags of visual words to deep convolutional neural networks for plant recognition[C]//Proceedings of the 6th International Conference on Pattern Recognition Applications and Methods. Piscataway, NJ:IEEE, 2017:479-486. [18] JEON W S, RHEE S Y. Plant leaf recognition using a convolution neural network[J]. International Journal of Fuzzy Logic & Intelligent Systems, 2017, 17(1):26-34. [19] TANG P, WANG H, KWONG S. G-MS2F:GoogleNet based multi-stage feature fusion of deep CNN for scene recognition[J]. Neurocomputing, 2016, 225:188-197. [20] SU J, FARAONE J, LIU J, et al. Redundancy-reduced MobileNet acceleration on reconfigurable logic for ImageNet classification[C]//Proceedings of the 14th International Symposium on Applied Reconfigurable Computing. Berlin:Springer, 2018:16-28. [21] PAN S J, TSANG I W, KWOK J T, et al. Domain adaptation via transfer component analysis[J]. IEEE Transactions on Neural Networks, 2011, 22(2):199-210. [22] WU S G, BAO F S, XU E Y, et al. A leaf recognition algorithm for plant classification using probabilistic neural network[C]//Proceedings of the 7th IEEE International Symposium on Signal Processing and Information Technology. Piscataway, NJ:IEEE, 2008:11-16. [23] NILSBACK M E, ZISSERMAN A. Automated flower classification over a large number of classes[C]//Proceedings of the 6th Indian Conference on Computer Vision, Graphics & Image Processing. Piscataway, NJ:IEEE, 2009:722-729. [24] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[J/OL]. arXiv Preprint, 2014, 2014:arXiv:1409.1556(2014-09-04)[2015-04-10]. https://arxiv.org/abs/1409.1556. [25] WU S, ZHONG S, LIU Y. Deep residual learning for image steganalysis[J]. Multimedia Tools & Applications, 2017, 77(9):10437-10453. [26] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[C]//Proceedings of the 25th International Conference on Neural Information Processing Systems. Lake Tahoe, Nevada:Curran Associates Inc., 2012:1097-1105. [27] GRIFFING L R. Who invented the dichotomous key? Richard Waller's watercolors of the herbs of Britain[J]. American Journal of Botany, 2011, 98(12):1911. [28] SRIVASTAVA N, HINTON G, KRIZHEVSKY A, et al. Dropout:a simple way to prevent neural networks from overfitting[J]. Journal of Machine Learning Research, 2014, 15(1):1929-1958. [29] CARUANA R. Multitask learning[J]. Machine Learning, 1997, 28(1):41-75. [30] KADIR A. A model of plant identification system using GLCM, lacunarity and shen features[J]. Research Journal of Pharmaceutical Biological & Chemical Sciences, 2014, 5(2):1-10. |