[1] KORNIY V, RUSYN B, LYSAK Y, et al. Quantitative analysis of metallographic images[C]//Proceedings of the 2006 International Conference on Modern Problems of Radio Engineering, Telecommunications, and Computer Science. Piscataway, NJ:IEEE, 2006:251-252. [2] 邓仕超, 刘铁根, 萧泽新. 应用Canny算法和灰度等高线的金相组织封闭边缘提取[J]. 光学精密工程, 2010, 18(10):2314-2323.(DENG S C, LIU T G, XIAO Z X. Extraction of enclosing image edge for metallographic structure based on Canny and grayscale contour line[J]. Optics and Precision Engineering, 2010, 18(10):2314-2323.) [3] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[C]//Proceedings of the 2012 International Conference on Neural Information Processing Systems. Lake Tahoe, Nevada:Curran Associates Inc., 2012:1097-1105. [4] LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11):2278-2324. [5] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[EB/OL].[2018-03-20].http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.740.6937&rep=rep1&type=pdf. [6] MUTHUKRISHNAN. R, RADHA M. Edge detection techniques for image segmentation[J]. International Journal of Computer Science & Information Technology, 2012, 3(6):250-254. [7] CANNY J. A computational approach to edge detection[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 1987, 8(6):184-203. [8] MARTIN D R, FOWLKES C C, MALIK J. Learning to detect natural image boundaries using local brightness, color, and texture cues[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2004, 26(5):530-549. [9] DOLLAR P, ZITNICK C L. Structured forests for fast edge detection[C]//Proceedings of the 2013 IEEE International Conference on Computer Vision. Washington, DC:IEEE Computer Society, 2014:1841-1848. [10] LIM J J, ZITNICK C L, DOLLAR P. Sketch tokens:a learned mid-level representation for contour and object detection[C]//Proceedings of the 2013 IEEE Conference on Computer Vision and Pattern Recognition. Washington, DC:IEEE Computer Society, 2013:3158-3165. [11] GANIN Y, LEMPITSKY V. N4-Fields:neural network nearest neighbor fields for image transforms[C]//ACCV 2014:Asian Conference on Computer Vision. Berlin:Springer, 2014:536-551. [12] BERTASIUS G, SHI J, TORRESANI L. DeepEdge:a multi-scale bifurcated deep network for top-down contour detection[C]//Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Washington, DC:IEEE Computer Society, 2015:4380-4389. [13] SHEN W, WANG X, WANG Y, et al. DeepContour:a deep convolutional feature learned by positive-sharing loss for contour detection[C]//Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Washington, DC:IEEE Computer Society, 2015:3982-3991. [14] ANANYEV M, GAVRILYUK A, MITRI S, et al. Cu and Gd co-doped BaCeO3, proton conductors:Experimental vs SEM image algorithmic-segmentation results[J]. Electrochimica Acta, 2014, 125(12):371-379. [15] LOPEZ P, LIRA J, HEIN I. Discrimination of ceramic types using digital image processing by means of morphological filters[J]. Archaeometry, 2014, 57(1):146-162. [16] HAHA M B, GALLUCCI E, GUIDOUM A, et al. Relation of expansion due to alkali silica reaction to the degree of reaction measured by SEM image analysis[J]. Cement & Concrete Research, 2007, 37(8):1206-1214. [17] 赵曌, 丁广太, 樊明磊,等. 融合LBP纹理和局部灰度特征的材料图像分割[J]. 计算机技术与发展, 2016, 26(10):11-16.(ZHAO Z, DING G T, FAN M L, et al. Material image segmentation combined LBP texture and local gray level feature[J]. Computer Technology and Development, 2016, 26(10):11-16.) [18] CHEN Y, CHEN J. A watershed segmentation algorithm based on ridge detection and rapid region merging[C]//Proceedings of the 2014 IEEE International Conference on Signal Processing, Communications and Computing. Piscataway, NJ:IEEE, 2014:420-424. [19] AZIMI S M, BRITZ D, ENGSTLER M, et al. Advanced steel microstructural classification by deep learning methods[EB/OL].[2018-03-20].http://pubman.mpdl.mpg.de/pubman/item/escidoc:2460757:2/component/escidoc:2460756/arXiv:1706.06480.pdf. [20] SRIVASTAVA N, HINTON G, KRIZHEVSKY A, et al. Dropout:a simple way to prevent neural networks from overfitting[J]. Journal of Machine Learning Research, 2014, 15(1):1929-1958. [21] KINGMA D P, BA J. Adam:a method for stochastic optimization[EB/OL].[2018-03-20].http://yeolab.weebly.com/uploads/2/5/5/0/25509700/a_method_for_stochastic_optimization_.pdf. |