Journal of Computer Applications ›› 2019, Vol. 39 ›› Issue (3): 688-694.DOI: 10.11772/j.issn.1001-9081.2018071501

Previous Articles     Next Articles

Pedestrian visual positioning algorithm for underground roadway based on deep learning

HAN Jianghong1,2, YUAN Jiaxuan1, WEI Xing1,2, LU Yang1,2   

  1. 1. School of Computer and Information, Hefei University of Technology, Hefei Anhui 230601, China;
    2. Engineering Research Center of Safety Critical Industry Measure and Control Technology, Ministry of Education, Hefei Anhui 230601, China
  • Received:2018-07-19 Revised:2018-09-01 Online:2019-03-10 Published:2019-03-11
  • Contact: 袁稼轩
  • Supported by:
    This work is partially supported by the National Key Research Development Program of China (2016YFC0801800, 2016YFC0801405).

基于深度学习的井下巷道行人视觉定位算法

韩江洪1,2, 袁稼轩1, 卫星1,2, 陆阳1,2   

  1. 1. 合肥工业大学 计算机与信息学院, 合肥 230601;
    2. 安全关键工业测控技术教育部工程研究中心, 合肥 230601
  • 作者简介:韩江洪(1954-),男,安徽庐江人,教授,博士生导师,硕士,主要研究方向:计算机网络与通信、计算机控制、汽车电子;袁稼轩(1994-),女,新疆阿拉尔人,硕士研究生,主要研究方向:DSP及嵌入式系统;卫星(1980-),男,安徽合肥人,副教授,博士,CCF会员,主要研究方向:物联网工程、离散事件动态系统;陆阳(1967-),男,安徽合肥人,教授,博士生导师,博士,CCF高级会员,主要研究方向:分布式控制技术、无线通信网络、工业物联网。
  • 基金资助:
    国家重点研发计划专项(2016YFC0801800;2016YFC0801405)。

Abstract: The self-driving mine locomotive needs to detect and locate pedestrians in front of it in the underground roadway in real-time. Non-visual methods such as laser radar are costly, while traditional visual methods based on feature extraction cannot solve the problem of poor illumination and uneven light in the laneway. To solve the problem, a pedestrian visual positioning algorithm for underground roadway based on deep learning was proposed. Firstly, the overall structure of the system based on deep learning network was given. Secondly, a multi-layer Convolutional Neural Network (CNN) for object detection was built to calculate the two-dimensional coordinates and the size of bounding box of pedestrians in visual field of the self-driving locomotive. Thirdly, the third-dimensional distance between the pedestrian in the image and the locomotive was calculated by polynomial fitting. Finally, the model was trained, verified and tested through real sample sets. Experimental results show that the accuracy of the proposed algorithm reaches 94%, the speed achieves 25 frames per second, and the distance detection error is less than 4%, thus efficient and real-time laneway pedestrian visual positioning is realized.

Key words: deep learning, Convolutional Neural Network (CNN), laneway pedestrian detection, visual positioning, image processing

摘要: 自主驾驶矿井机车需要实时检测和定位行驶前方的巷道行人,激光雷达等非视觉类方法成本高昂,而传统基于特征提取视觉类方法无法解决井下光照差且光线不均匀的问题。提出一种基于深度学习的井下巷道行人视觉定位算法。首先给出基于深度学习网络的系统整体结构;其次,搭建目标检测多层卷积神经网络(CNN),生成自主驾驶机车前方视野范围内行人的二维坐标及边界框的尺寸;再次,通过多项式拟合计算出图像中行人到机车之间的第三维距离;最后通过真实样本集实施模型训练、验证与测试。实验结果表明,所提算法的检测准确率达94%,速度达每秒25帧,测距误差小于4%,实现了实时高效的巷道行人视觉定位。

关键词: 深度学习, 卷积神经网络, 巷道行人检测, 视觉定位, 图像处理

CLC Number: