[1] BENNET D J, MCINNES C R. Distributed control of multi-robot systems using bifurcating potential fields[J]. Robotics and Autonomous Systems, 2010, 58(3):256-264. [2] DORIGO M, MANIEZZO V, COLORNI A. Ant system:optimization by a colony of cooperating Agents[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B:Cybernetics, 1996, 26(1):29-41. [3] KOVACS B, SZAYER G, TAJTI F, et al. A novel potential field method for path planning of mobile robots by adapting animal motion attributes[J]. Robotics and Autonomous Systems, 2016, 82(C):24-34. [4] QIAN W J, ZHOU L F,YANG L, et al. An improved ant colony algorithm of three dimensional path planning[C]//Proceedings of the 201710th International Symposium on Computational Intelligence and Design. Piscataway, NJ:IEEE, 2017,1:119-122. [5] DARWISH A H, JOUKHADAR A, KASHKASH M. Using the bees algorithm for wheeled mobile robot path planning in an indoor dynamic environment[J]. Cogent Engineering, 2018, 5(1):1-23. [6] 裴振兵,陈雪波.改进蚁群算法及其在机器人避障中的应用[J].智能系统学报,2015,10(1):90-96.(PEI Z B, CHEN X B. Improved ant colony algorithm and its application in obstacle avoidance for robot[J]. CAAI Transactions on Intelligent Systems, 2015, 10(1):90-96.) [7] 柳长安,鄢小虎,刘春阳,等.基于改进蚁群算法的移动机器人动态路径规划方法[J].电子学报,2011,39(5):1220-1224.(LIU C A, YAN X H, LIU C Y, et al. Dynamic path planning for mobile robot based on improved ant colony optimization algorithm[J]. Acta Electronica Sinica, 2011, 39(5):1220-1224.) [8] YUAN Z, YU H, HUANG M. Improved ant colony optimization algorithm for intelligent vehicle path planning[C]//Proceedings of the 2017 International Conference on Industrial Informatics-Computing Technology, Intelligent Technology, Industrial Information Integration. Piscataway, NJ:IEEE, 2017:1-4. [9] ZOUARI W, ALAYA I, TAGINA M. A hybrid ant colony algorithm with a local search for the strongly correlated knapsack problem[C]//Proceedings of the 2017 IEEE/ACS 14th International Conference on Computer Systems and Applications. Piscataway, NJ:IEEE, 2017:527-533. [10] 屈鸿,黄利伟,柯星.动态环境下基于改进蚁群算法的机器人路径规划研究[J].电子科技大学学报,2015,44(2):260-265.(QU H, HUANG L W, KE X. Research of improved ant colony based robot path planning under dynamic environment[J]. Journal of University of Electronic Science and Technology of China, 2015, 44(2):260-265.) [11] MYLVAGANAM T, SASSANO M, ASTOLFI A. A constructive differential game approach to collision avoidance in multi-Agent systems[C]//Proceedings of the 2014 American Control Conference on Portland. Piscataway, NJ:IEEE, 2014:311-316. [12] MYLVAGANAM T, SASSANO M, ASTOLFI A. A differential game approach to multi-Agent collision avoidance[J]. IEEE Transactions on Automatic Control, 2017, 62(8):4229-4235. [13] TIZHOOSH H R. Opposition-based learning:a new scheme for machine intelligence[C]//CIMCA'05:Proceedings of the 2005 International Conference on Computational Intelligence for Modelling, Control and Automation and International Conference on Intelligent Agents, Web Technologies and Internet Commerce. Washington, DC:IEEE Computer Society, 2005,1:695-701. [14] 杜继永,张凤鸣,李建文,等.一种具有初始化功能的自适应惯性权重粒子群算法[J].信息与控制,2012,41(2):165-169.(DU J Y, ZHANG F M, LI J W, et al. A particle swarm optimization algorithm with initialized adaptive inertia weights[J]. Information and Control, 2012, 41(2):165-169.) [15] 施锡全.博弈论[M].上海:上海财经大学出版社,2000:29-80.(SHI X Q. Game Theory[M]. Shanghai:Shanghai University of Finance and Economics Press, 2000:29-80.) [16] FUDENBERG D, LEVINE D K. The Theory of Learning in Games[M]. Cambridge:MIT Press, 1996:177-198. [17] 丁占文,蔡超英,杨宏林,等.不完全博弈学习过程的虚拟行动规则[J].运筹学学报,2010,14(3):91-100.(DING Z W,CAI C Y, YANG H L, et al. Rule of fictitious play in the learning process with incomplete learning times[J]. Operations Research Transactions, 2010, 14(3):91-100.) |