1 |
YU M, CHEN S, YAO Y, et al. Research on dual-arm coordinated trajectory planning in grid coordinate space [C]// Proceedings of the 2020 IEEE 5th Information Technology and Mechatronics Engineering Conference. Piscataway: IEEE, 2020: 985-989. 10.1109/itoec49072.2020.9141634
|
2 |
VAREDI-KOULAEI S M, MOKHTARI M. Trajectory tracking solution of a robotic arm based on optimized ANN [C]// Proceedings of the 2018 6th RSI International Conference on Robotics and Mechatronics. Piscataway: IEEE, 2018: 76-81. 10.1109/icrom.2018.8657567
|
3 |
GANDIKOTA R. Computer vision for autonomous vehicles [EB/OL]. [2022-10-18]. .
|
4 |
SCHWARTING W, ALONSO-MORA J, RUS D. Planning and decision-making for autonomous vehicles [J]. Annual Review of Control, Robotics, and Autonomous Systems, 2018, 1: 187-210. 10.1146/annurev-control-060117-105157
|
5 |
LV N, LIU J, JIA Y. Dynamic modeling and control of deformable linear objects for single-arm and dual-arm robot manipulations [J]. IEEE Transactions on Robotics, 2022, 38(4): 2341-2353. 10.1109/tro.2021.3139838
|
6 |
LI S, JIN L, MIRZA M A. Kinematic Control of Redundant Robot Arms Using Neural Networks [M]. New York: Wiley-IEEE Press, 2019. 10.1002/9781119557005
|
7 |
MATHEW M J M R, HIREMATH S S. Reinforcement learning based approach for mobile robot navigation [C]// Proceedings of the 2019 International Conference on Computational Intelligence and Knowledge Economy. Piscataway: IEEE, 2019: 523-526. 10.1109/iccike47802.2019.9004256
|
8 |
ABDUL HAMEED M S, KHAN M M, SCHWUNG A. Curiosity based RL on robot manufacturing cell [C]// Proceedings of the 2021 22nd IEEE International Conference on Industrial Technology. Piscataway: IEEE, 2021: 1048-1053. 10.1109/icit46573.2021.9453577
|
9 |
WANG Z, SCHAUL T, HESSEL M, et al. Dueling network architectures for deep reinforcement learning [C]// Proceedings of the 33rd International Conference on Machine Learning. New York: JMLR.org, 2016: 1995-2003.
|
10 |
GU S, LILLICRAP T, SUTSKEVER I, et al. Continuous deep Q-learning with model-based acceleration [C]// Proceedings of the 33rd International Conference on Machine Learning. New York: JMLR.org, 2016: 2829-2838.
|
11 |
PRIANTO E, KIM M S, J-H PARK, et al. Path planning for multi-arm manipulators using deep reinforcement learning: soft actor-critic with hindsight experience replay [J]. Sensors, 2020, 20(20): 5911. 10.3390/s20205911
|
12 |
张永梅,赵家瑞,吴爱燕.好奇心驱动的深度强化学习机器人路径规划算法[J].科学技术与工程, 2022, 22(25): 11075-11083. 10.3969/j.issn.1671-1815.2022.25.032
|
|
ZHANG Y M, ZHAO J R, WU A Y. A robot path planning algorithm based on curiosity-driven deep reinforcement learning [J]. Science Technology and Engineering, 2022, 22(25): 11075-11083. 10.3969/j.issn.1671-1815.2022.25.032
|
13 |
于建均,徐骢驰,阮晓钢,等.基于神经网络的机械臂的模仿学习研究[J].控制工程, 2017, 24(11): 2368-2373.
|
|
YU J J, XU C C, RUAN X G, et al. Research of imitation learning in robot arm based on neural network [J]. Control Engineering of China, 2017, 24(11): 2368-2373.
|
14 |
RAHMATIZADEH R, ABOLGHASEMI P, BEHAL A, et al. From virtual demonstration to real-world manipulation using LSTM and MDN [C]// Proceedings of the 32nd AAAI Conference on Artificial Intelligence and 30th Innovative Applications of Artificial Intelligence Conference and 8th AAAI Symposium on Educational Advances in Artificial Intelligence. Menlo Park: AAAI Press, 2018: 6524-6531. 10.1609/aaai.v32i1.12099
|
15 |
FINN C, LEVINE S, ABBEEL P. Guided cost learning: deep inverse optimal control via policy optimization [C]// Proceedings of the 33rd International Conference on Machine Learning. New York: JMLR.org, 2016: 49-58. 10.1109/icra.2016.7487173
|
16 |
汤自林, 高霄, 肖晓晖.基于模仿学习的变刚度人机协作搬运控制[J].浙江大学学报(工学版), 2021, 55(11): 2091-2099.
|
|
TANG Z L, GAO X, XIAO X H. Variable stiffness control for human-robot cooperative transportation based on imitation learning [J]. Journal of Zhejiang University (Engineering Science), 2021, 55(11): 2091-2099.
|
17 |
HAARNOJA T, ZHOU A, ABBEEL P, et al. Soft actor-critic: off-policy maximum entropy deep reinforcement learning with a stochastic actor [C]// Proceedings of the 35th International Conference on Machine Learning. New York: JMLR.org, 2018: 1861-1870. 10.1109/icra.2018.8460756
|
18 |
CHENG Y, SONG Y. Autonomous decision-making generation of UAV based on soft actor-critic algorithm [C]// Proceedings of the 2020 39th Chinese Control Conference. Piscataway: IEEE, 2020: 7350-7355. 10.23919/ccc50068.2020.9188886
|
19 |
陈松, 章晓芳, 章宗长, 等.基于线性动态跳帧的深度双Q网络[J].计算机学报, 2019, 42(11): 2561-2573. 10.11897/SP.J.1016.2019.02561
|
|
CHEN S, ZHANG X F, ZHANG Z Z, et al. Deep double Q-network based on linear dynamic frame skip [J]. Chinese Journal of Computers, 2019, 42(11): 2561-2573. 10.11897/SP.J.1016.2019.02561
|
20 |
HU H. VReLU activation functions for artificial neural networks [C]// Proceedings of the 2018 14th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery. Piscataway: IEEE, 2018: 856-860. 10.1109/fskd.2018.8687140
|
21 |
LILLICRAP T P, HUNT J J, PRITZEL A, et al. Continuous control with deep reinforcement learning [EB/OL]. [2022-10-18]. .
|