[1] 吴德.水文时间序列相似模式挖掘的研究与应用[D].南京:河海大学,2007.(WU D. Research and application of hydrological time series similarity pattern[D]. Nanjing:Hohai University, 2007.) [2] 桑燕芳,王中根,刘昌明.水文时间序列分析方法研究进展[J].地理科学进展,2013,32(1):20-30. (SANG Y F, WANG Z G, LIU C M. Research progress on the time series analysis methods in hydrology[J]. Progress in Geography, 2013, 32(1):20-30.) [3] 孙建树,娄渊胜,陈裕俊.基于ARIMA-SVR的水文时间序列异常值检测[J].计算机与数字工程,2018,46(2):225-230. (SUN J S, LOU Y S, CHEN Y J. Outlier detection of hydrological time series based on ARIMA-SVR model[J]. Computer & Digital Engineering, 2018, 46(2):225-230.) [4] 余宇峰,朱跃龙,万定生,等.基于滑动窗口预测的水文时间序列异常检测[J].计算机应用,2014,34(8):2217-2220,2226. (YU Y F, ZHU Y L, WAN D S, et al. Time series outlier detection based on sliding window prediction[J]. Journal of Computer Applications,2014,34(8):2217-2220,2226.) [5] HAWKINS D M. Identification of Outliers[M]. Berlin:Springer, 1980:27-41 [6] 牛丽肖,王正方,臧传治,等.一种基于小波变换和ARIMA的短期电价混合预测模型[J].计算机应用研究,2014,31(3):688-691. (NIU L X, WANG Z F, ZANG C Z, et al. Hybrid model based on wavelet and ARIMA for short-term electricity price forecasting[J]. Application Research of Computers,2014,31(3):688-691.) [7] 任勋益,王汝传,孔强.基于主元分析和支持向量机的异常检测[J].计算机应用研究,2009,26(7):2719-2721. (REN X Y, WANG R C, KONG Q. Principal component analysis and support vector machine based anomaly detection[J]. Application Research of Computers,2009,26(7):2719-2721.) [8] VY N D K, ANH D T. Detecting variable length anomaly patterns in time series data[C]//Proceedings of the 2016 International Conference on Data Mining and Big Data, LNCS 9714. Berlin:Springer, 2016:279-287. [9] BREUNIG M M, KRIEGEL H-P, NG R T, et al. LOF:Identifying density-based local outliers[C]//Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data. New York:ACM, 2000:93-104. [10] 潘渊洋,李光辉,徐勇军.基于DBSCAN的环境传感器网络异常数据检测方法[J].计算机应用与软件,2012,29(11):69-72. (PAN Y Y, LI G H, XU Y J. Abnormal data detection method for environment wireless sensor networks based on DBSCAN[J]. Computer Applications and Software, 2012, 29(11):69-72.) [11] twitter/AnomalyDEtection[EB/OL].[2015-09-01]. https://github.com/twitter/AnomalyDetection. [12] 杨志勇,朱跃龙,万定生.基于知识粒度的时间序列异常检测研究[J].计算机技术与发展,2016,26(7):51-54. (YANG Z Y, ZHU Y L, WAN D S. Research on time series anomaly detection based on knowledge granularity[J]. Computer Technology and Development, 2016, 26(7):51-54.) [13] 刘雪梅,王亚茹.基于异常因子的时间序列异常模式检测[J].计算机技术与发展,2018,28(3):93-96. (LIU X M, WANG Y R. Anomaly pattern detection in time series based on outlier factor[J]. Computer Technology and Development, 2018, 28(3):93-96.) [14] Spark R (R frontend for Spark)[EB/OL].[2016-06-11]. https://github.com/amplab-extras/SparkR.pkg. [15] 谭旭杰,邓长寿,董小刚,等.SparkDE:一种基于RDD云计算模型的并行差分进化算法[J].计算机科学,2016,43(9):116-119,139. (TAN X J, DENG C S, DONG X G, et al. SparkDE:a parallel version of differential evolution based on resilient distributed datasets model in cloud computing[J]. Computer Science, 2016, 43(9):116-119,139.) [16] CONTRERAS J, ESPINOLA R, NOGALES F J, et al. ARIMA models to predict next-day electricity prices[J]. IEEE Transactions on Power Systems,2003,18(3):1014-1020. |