[1] 孙旭, 李晓光, 李嘉锋, 等.基于深度学习的图像超分辨率复原研究进展[J]. 自动化学报, 2017, 43(5): 697-709. (SUN X, LI X G, LI J F, et al. Review on deep learning based image super-resolution restoration algorithms[J]. Acta Automatica Sinica, 2017, 43(5): 697-709.) [2] 苏衡, 周杰, 张志浩.超分辨率图像重建方法综述[J]. 自动化学报, 2013, 39(8): 1202-1213. (SU H, ZHOU J, ZHANG Z H. Survey of super-resolution image reconstruction methods[J]. Acta Automatica Sinica, 2013, 39(8): 1202-1213.) [3] 李浪宇, 苏卓, 石晓红, 等.图像超分辨率重建中的细节互补卷积模型[J]. 中国图象图形学报, 2018, 23(4): 572-582. (LI L Y, SU Z, SHI X H, et al. Mutual-detail convolution model for image super-resolution reconstruction[J]. Journal of Image and Graphics, 2018, 23(4): 572-582.) [4] KIM J, LEE J K, LEE K M. Accurate image super-resolution using very deep convolutional networks[C]// Proceedings of the 2016 IEEE Conference on Computer on Vision and Pattern Recognition. Piscataway, NJ: IEEE, 2016: 1646-1654. [5] TIAN J, MA K K. A survey on super-resolution imaging[J]. Signal, Image and Video Processing, 2011, 5(3): 329-342. [6] YANG C Y, MA C, YANG M H. Single-image super-resolution: a benchmark[C]// Proceedings of the 2014 European Conference on Computer Vision. Berlin: Springer, 2014: 372-386. [7] YANG J C, WRIGHT J, HUANG T S, et al. Image super-resolution via sparse representation[J]. IEEE Transactions on Image Processing, 2010, 19(11): 2861-2873. [8] 李云飞, 符冉迪, 金炜, 等.多通道卷积的图像超分辨率方法[J]. 中国图象图形学报, 2017, 22(12): 1690-1700. (LI Y F, FU R D, JIN W, et al. Image super-resolution using multi-channel convolution[J]. Journal of Image and Graphics, 2017, 22(12): 1690-1700.) [9] ZEYDE R, ELAD M, PROTTER M. On single image scale-up using sparse-representations[C]// Proceedings of the 2010 International Conference on Curves and Surfaces, LNCS 6920. Berlin: Springer, 2010: 711-730. [10] TIMOFTE R, DE V, GOOL L V. Anchored neighborhood regression for fast example-based super-resolution[C]// Proceedings of the 2013 IEEE International Conference on Computer Vision. Piscataway, NJ: IEEE, 2013: 1920-1927. [11] TIMOFTE R, ROTHE R, GOOL L V. A+: adjusted anchored neighborhood regression for fast super-resolution[C]// Proceedings of the 12th Asian Conference on Computer Vision. Berlin: Springer, 2015: 111-126. [12] CHANG H, XIONG Y, YEUNG D Y. Super-resolution through neighbor embedding[C]// Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington, DC: IEEE Computer Society, 2004: 275-282. [13] DONG C, CHEN C L, HE K, et al. Learning a deep convolutional network for image super-resolution[C]// ECCV 2014: Proceedings of the 2014 European Conference on Computer Vision. Berlin: Springer, 2014: 184-199. [14] 徐冉, 张俊格, 黄凯奇.利用双通道卷积神经网络的图像超分辨率算法[J]. 中国图象图形学报, 2016, 21(5): 556-564. (XU R, ZHANG J G, HUANG K Q. Image super-resolution using two-channel convolutional neural networks[J]. Journal of Image and Graphics, 2016, 21(5): 556-564.) [15] 刘娜, 李翠华.基于多层卷积神经网络学习的单帧图像超分辨率重建方法[J]. 中国科技论文, 2015, 10(2): 201-206. (LIU N, LI C H. Single image super-resolution reconstruction via deep convolutional neural network[J]. China Sciencepaper, 2015, 10(2): 201-206.) [16] YOUM G Y, BAE S H, KIM M. Image super-resolution based on convolution neural networks using multi-channel input[C]// Proceedings of the 2006 IEEE 12th Image, Video, and Multidimensional Signal Processing Workshop. Piscataway, NJ: IEEE, 2016:1-5. [17] SHI W, CABALLERO J, HUSZAR F, et al. Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network[C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway, NJ: IEEE, 2016: 1874-1883. [18] LEDIG C, THEIS L, HUSZAR F, et al. Photo-realistic single image super-resolution using a generative adversarial network[C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway, NJ: IEEE, 2017: 105-114. [19] DONG C, CHEN C L, HE K, et al. Image super-resolution using deep convolutional networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 38(2): 295-307. [20] JIA Y Q, SHELHAMER E, DONAHUE J, et al. Caffe: convolutional architecture for fast feature embedding[C]// Proceedings of the 22nd ACM International Conference on Multimedia. New York: ACM, 2014: 675-678. [21] MEGHA G, YASHPAL L, VIVEK L. Analytical relation & comparison of PSNR and SSIM on babbon image and human eye perception using Matlab[J]. International Journal of Advanced Research in Engineering and Applied Sciences, 2015, 4(5): 108-119. |