[1] NADEAU D, SEKINE S. A survey of named entity recognition and classification[J]. Lingvisticae Investigationes, 2007, 30(1): 3-26. [2] WOLINSKI F, VICHOT F, DILLET B. Automatic processing of proper names in texts[C]// Proceedings of the 7th Conference on European Chapter of the Association for Computational Linguistics. San Francisco, CA: Morgan Kaufmann Publishers, 1995: 23-30. [3] AZPEITIA A, CUDADROS M, GAINES S, et al. NERC-fr: supervised named entity recognition for French[C]// TSD 2014: Proceedings of the 2014 International Conference on Text, Speech and Dialogue. Berlin: Springer, 2014: 158-165. [4] POIBEAU T. The multilingual named entity recognition framework[C]// Proceedings of the 10th Conference on European Chapter of the Association for Computational Linguistics. Stroudsburg, PA: Association for Computational Linguistics, 2003: 155-158. [5] PETASIS G, VICHOT F, WOLINSKI F, et al. Using machine learning to maintain rule-based named-entity recognition and classification systems[C]// Proceedings of the 39th Annual Meeting on Association for Computational Linguistics. Stroudsburg, PA: Association for Computational Linguistics, 2001: 426-433. [6] WU D, NGAI G, CARPUAT M. A stacked, voted, stacked model for named entity recognition[C]// Proceedings of the 7th Conference on Natural Language Learning at HLT. Stroudsburg, PA: Association for Computational Linguistics, 2003: 200-203. [7] NOTHMAN J, RINGLAND N, RADFORD W, et al. Learning multilingual named entity recognition from Wikipedia[J]. Artificial Intelligence, 2013, 194:151-175. [8] HAMMERTON J. Named entity recognition with long short-term memory[C]// Proceedings of the 7th Conference on Natural Language Learning at HLT. Stroudsburg, PA: Association for Computational Linguistics, 2003: 172-175. [9] REI M, CRICHTON G, PYYSALO S. Attending to characters in neural sequence labeling models[J/OL]. arXiv Preprint, 2016, 2016: arXiv:1611.04361[2016-11-14]. https://arxiv.org/abs/1611.04361. [10] LAMPLE G, BALLESTEROS M, SUBRAMANIAN S, et al. Neural architectures for named entity recognition[C]// Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics. Stroudsburg, PA: Association for Computational Linguistics, 2016: 260-270. [11] LE Q, MIKOLOV T. Distributed representations of sentences and documents[C]// Proceedings of the 31st International Conference on Machine Learning. New York: JMLR.org, 2014: 1188-1196. [12] PENNINGTON J, SOCHER R, MANNING C. Glove: global vectors for word representation[C]// Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, PA: Association for Computational Linguistics, 2014: 1532-1543. [13] SANTOS C D, ZADROZNY B. Learning character-level representations for part-of-speech tagging[C]// Proceedings of the 31st International Conference on Machine Learning. New York: JMLR.org, 2014: 1818-1826. [14] CHO K, van MERRIENBOER B, GULCEHRE C, et al. Learning phrase representations using RNN encoder-decoder for statistical machine translation[C]// Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, PA: Association for Computational Linguistics, 2014: 1724-1734. [15] SANG E F, VEENSTRA J. Representing text chunks[C]// Proceedings of the 9th Conference on European Chapter of the Association for Computational Linguistics. Stroudsburg, PA: Association for Computational Linguistics, 1999: 173-179. |