[1] CHEN Y, YANG W, TAN H, et al. Image enhancement for LD based imaging in turbid water[J]. Optik, 2016, 127(2):517-521.
[2] 谌雨章,叶婷,程超杰,et al.水下湍流成像退化及优化恢复研究[J].光电工程,2018,45(12):55-65.(CHEN Y Z, YE T, CHENG C J, et al. Degradation and optimal recovery of underwater turbulent imaging[J]. Opto-Electronic Engineering, 2018, 45(12):55-65.)
[3] SCHETTINI R, CORCHS S. Underwater image processing:state of the art of restoration and image enhancement methods[J]. EURASIP Journal on Advances in Signal Processing, 2010(3):1-15.
[4] 杨爱萍,郑佳,王建,等.基于颜色失真去除与暗通道先验的水下图像复原[J].电子与信息学报,2015,37(11):2541-2547.(YANG A P, ZHENG J, WANG J, et al. Underwater image restoration based on color cast removal and dark channel prior[J]. Journal of Electronics and Information Technology, 2015, 37(11):2541-2547.)
[5] 王鑫,朱行成,宁晨,等.融合暗原色先验和稀疏表示的水下图像复原[J].电子与信息学报,2018, 40(2):264-271.(WANG X, ZHU X C, NING C, et al. Combination of dark-channel prior with sparse representation for underwater image restoration[J]. Journal of Electronics and Information Technology, 2018, 40(2):264-271.)
[6] 郭相凤,贾建芳,杨瑞峰,等.基于水下图像光学成像模型的清晰化算法[J].计算机应用,2012,32(10):2836-2839.(GUO X F, JIA J F, YANG R F, et al. Visibility enhancing algorithm based on optical imaging model for underwater images[J]. Journal of Computer Applications, 2012, 32(10):2836-2839.)
[7] QUEVEDO E, DELORY E, CALLIC G M, et al. Underwater video enhancement using multi-camera super-resolution[J]. Optics Communications, 2017, 404:94-102.
[8] LI J, LI Y. Underwater image restoration algorithm for free-ascending deep-sea tripods[J]. Optics and Laser Technology, 2019, 110:129-134.
[9] 张颢,范新南,李敏,等.基于光学成像模型的水下图像超分辨率重构[J].计算机与现代化,2017(4):7-13.(ZHANG H, FAN X N, LI M, et al. Underwater image super-resolution reconstruction based on optical imaging model[J]. Computer and Modernization, 2017(4):7-13.)
[10] LU H, LI Y, NAKASHIMA S, et al. Underwater image super-resolution by descattering and fusion[J]. IEEE Access, 2017,5:670-679.
[11] NAKAGAWA Y, KIHARA K, TADOH R, et al. Super resolving of the depth map for 3D reconstruction of underwater terrain using kinect[C]//Proceedings of the 2016 IEEE 22nd International Conference on Parallel and Distributed Systems. Piscataway, NJ:IEEE, 2016, 1:1237-1240.
[12] LU H, LI Y, UEMURA T, et al. Low illumination underwater light field images reconstruction using deep convolutional neural networks[J]. Future Generation Computer Systems, 2018, 82:142-148.
[13] PEREZ J, ATTANASIO A C, NECHYPORENKO N, et al. A deep learning approach for underwater image enhancement[C]//Proceedings of the 2017 International Work-Conference on the Interplay Between Natural and Artificial Computation, LNCS 10338. Berlin:Springer, 2017:183-192.
[14] DONG C, LOY C C, HE K, et al. Learning a deep convolutional network for image super-resolution[C]//Proceedings of the 2014 European Conference on Computer Vision, LNCS 8692. Berlin:Springer, 2014:184-199.
[15] 张清博,张晓晖,韩宏伟.一种基于深度卷积神经网络的水下光电图像质量优化方法[J].光学学报,2018,38(11):88-96.(ZHANG Q B, ZHANG X H, HAN H W. Optimization of underwater photoelectric image quality based on deep convolutional neural networks[J]. Acta Optica Sinica, 2018, 38(11):88-96.)
[16] LIM B, SON S, KIM H, et al. Enhanced deep residual networks for single image super-resolution[C]//Proceedings of the 2017 Computer Vision and Pattern Recognition Workshops. Washington, DC:IEEE Computer Society, 2017:136-144.
[17] KIM J, LEE J K, LEE K M. Accurate image super-resolution using very deep convolutional networks[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Washington, DC:IEEE Computer Society, 2016:1646-1654.
[18] HE K, ZHANG X, REN S, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(9):1904-1916.
[19] HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Washington, DC:IEEE Computer Society, 2016, 1:770-778.
[20] TONG T, LI G, LIU X, et al. Image super-resolution using dense skip connections[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision. Washington, DC:IEEE Computer Society, 2017:4809-4817.
[21] WANG Z, BOVIK A C, SHEIKH H R, et al. Image quality assessment:from error visibility to structural similarity[J]. IEEE Transactions on Image Processing, 2004, 13(4):600-612.
[22] TIMOFTE R, de SMET V, van GOOL L. A+:adjusted anchored neighborhood regression for fast super-resolution[C]//Proceedings of the 2014 Asian Conference on Computer Vision, LNCS 9006. Berlin:Springer, 2014:111-126.
[23] HUANG J-B, SINGH A, AHUJA N. Single image super-resolution from transformed self-exemplars[C]//Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Washington, DC:IEEE Computer Society, 2015, 1:5197-5206. |