[1] TANG J, ZHANG Y, SUN J, et al. Quantitative study of individual emotional states in social networks[J]. IEEE Transactions on Affective Computing, 2012, 3(2):132-144. [2] SUN Q, NIU J, YAO Z, et al. Research on semantic orientation classification of chinese online product reviews based on multi-aspect sentiment analysis[C]//Proceedings of the IEEE/ACM 3rd International Conference on Big Data Computing Applications and Technologies. Piscataway:IEEE, 2016:262-267. [3] 李然,林政,林海伦,等.文本情绪分析综述[J].计算机研究与发展,2018,55(1):30-52. (LI R, LIN Z, LIN H L, et al. Text emotion analysis:a survey[J]. Journal of Computer Research and Development, 2018, 55(1):30-52.) [4] 王科,夏睿.情感词典自动构建方法综述[J].自动化学报,2016,42(4):495-511.(WANG K, XIA R. A survey on automatical construction methods of sentiment lexicons[J]. Acta Automatica Sinica, 2016, 42(4):495-511.) [5] HU M, LIU B. Mining and summarizing customer reviews[C]//Proceedings of the 10th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York:ACM, 2004:168-177. [6] KIM S M, HOVY E. Identifying and analyzing judgment opinions[C]//Proceedings of the 2006 Main Conference on Human Language Technology Conference. Stroudsburg, PA:Association for Computational Linguistics, 2006:200-207. [7] 郗亚辉.产品评论中领域情感词典的构建[J].中文信息学报,2016,30(5):136-144.(XI Y H. Construction of domain-specific sentiment lexicon in product reviews[J]. Chinese Journal of Information Processing, 2016, 30(5):136-144.) [8] XU G, YU Z, YAO H, et al. Chinese text sentiment analysis based on extended sentiment dictionary[J]. IEEE Access, 2019, 7:43749-43762. [9] PANG B, LEE L. Opinion mining and sentiment analysis[J]. Foundations and Trends in Information Retrieval, 2008, 2(1/2):1-135. [10] 李婷婷,姬东鸿.基于SVM和CRF多特征组合的微博情感分析[J].计算机应用研究,2015,32(4):978-981.(LI T T, JI D H. Sentiment analysis of micro-blog based on SVM and CRF using various combinations of features[J]. Application Research of Computers, 2015, 32(4):978-981.) [11] 朱远平,戴汝为.基于SVM决策树的文本分类器[J].模式识别与人工智能,2005,18(4):412-416.(ZHU Y P, DAI R W. Text classifier based on SVM decision tree[J]. Pattern Recognition and Artificial Intelligence, 2005, 18(4):412-416.) [12] CAI Y, YANG K, HUANG D, et al. A hybrid model for opinion mining based on domain sentiment dictionary[J]. International Journal of Machine Learning and Cybernetics, 2019, 10(8):2131-2142. [13] BENGIO Y, DUCHARME R, VINCENT P, et al. A neural probabilistic language model[J]. Journal of Machine Learning Research, 2003, 3:1137-1155. [14] KIM Y. Convolutional neural networks for sentence classification[EB/OL].[2018-10-10]. https://arxiv.org/pdf/1408.5882.pdf. [15] 梁军,柴玉梅,原慧斌,等.基于极性转移和LSTM递归网络的情感分析[J].中文信息学报,2015,29(5):152-160.(LIANG J, CHAI Y M, YUAN H B, et al. Polarity shifting and LSTM based recursive networks for sentiment analysis[J]. Journal of Chinese Information Processing, 2015, 29(5):152-160.) [16] 曾谁飞,张笑燕,杜晓峰,等.基于神经网络的文本表示模型新方法[J].通信学报,2017,38(4):86-98.(ZENG S F, ZHANG X Y, DU X F, et al. A new method of text representation model based on neural network[J]. Journal on Communications, 2017, 38(4):86-98.) [17] MA R, WANG K, QIU T, et al. Feature-based compositing memory networks for aspect-based sentiment classification in social Internet of things[J]. Future Generation Computer Systems, 2019, 92:879-888. [18] 钮成明,詹国华,李志华.基于深度神经网络的微博文本情感倾向性分析[J].计算机系统应用,2018,27(11):205-210.(NIU C M, ZHAN G H, LI Z H. Chinese Weibo sentiment analysis based on deep neural network[J]. Computer Systems and Applications, 2018, 27(11):205-210.) [19] 数据堂.停用词集合[EB/OL].[2016-07-05]. http://www.datatang.com/data/19300/.(Data Hall. Stop Words Set[EB/OL].[2016-07-05]. http://www.datatang.com/data/19300/.) [20] MIKOLOV T, SUTSKEVER I, CHEN K, et al. Distributed representations of words and phrases and their compositionality[C]//Proceedings of the 26th International Conference on Neural Information Processing Systems. New York:Curran Associates Inc., 2013:3111-3119. [21] MIKOLOV T, CHEN K, CORRADO G, et al. Efficient estimation of word representations in vector space[EB/OL].[2019-02-02]. https://arxiv.org/pdf/1301.3781.pdf. [22] BENGIO Y, SIMARD P, FRASCONI P. Learning long-term dependencies with gradient descent is difficult[J]. IEEE Transactions on Neural Networks, 1994, 5(2):157-166. [23] HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural Computation, 1997, 9(8):1735-1780. [24] SCHUSTER M, PALIWAL K K. Bidirectional recurrent neural networks[J]. IEEE Transactions on Signal Processing, 2002, 45(11):2673-2681. [25] PATTANAYAK S. Convolutional neural networks[M]//Pro Deep Learning with TensorFlow. Berkeley, CA:Apress, 2017:153-221 [26] 赵宏,常兆斌,王乐.基于词法特征的恶意域名快速检测算法[J].计算机应用,2019,39(1):227-231.(ZHAO H, CHANG Z B, WANG L. Fast malicious domain name detection algorithm based on lexical features[J]. Journal of Computer Applications, 2019, 39(1):227-231.) [27] SOSA P M. Twitter sentiment analysis using combined LSTM-CNN models[EB/OL].[2019-02-02]. https://www.academia.edu/35947062/Twitter_Sentiment_Analysis_using_combined_LSTM-CNN_Models. [28] 李洋,董红斌.基于CNN和BiLSTM网络特征融合的文本情感分析[J].计算机应用,2018,38(11):3075-3080.(LI Y, DONG H B. Text sentiment analysis based on feature fusion of convolution neural network and bidirectional long short-term memory network[J]. Journal of Computer Applications, 2018, 38(11):3075-3080.) |