[1] MCPHERSON M, SMITH-LOVIN L, COOK J M. Birds of a feather:homophily in social networks[J]. Annual Review of Sociology, 2001, 27:415-444. [2] AIELLO L M, BARRAT A, SCHIFANELLA R, et al. Friendship prediction and homophily in social media[J]. ACM Transactions on the Web, 2012, 6(2):373-382. [3] GIRVAN M, NEWMAN M E J. Community structure in social and biological networks[J]. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99(12):7821-7826. [4] NEWMAN M E J, GIRVAN M. Finding and evaluating community structure in networks[J]. Physical Review E, Statistical, Nonlinear, and Soft Matter Physics, 2004, 69(2 Pt 2):Article No. 026113. [5] KERNIGHAN B W, LIN S. A efficient heuristic procedure for partitioning graphs[J]. Bell System Technical Journal, 1970, 49(2):291-307. [6] NEWMAN M E J. Fast algorithm for detecting community structure in networks[J]. Physical Review E, Statistical, Nonlinear, and Soft Matter Physics, 2004, 69(6 Pt 2):Article No. 066133. [7] BLONDEL V D, GUILLAUME J L, LAMBIOTTE R, et al. Fast unfolding of communities in large networks[J]. Journal of Statistical Mechanics:Theory and Experiment, 2008, 2008:Article No. P10008. [8] PEROZZI B, AL-RFOU R, SKIENA S. Deepwalk:online learning of social representations[C]//Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Detection and Data Mining. New York:ACM, 2014:701-710. [9] MIKOLOV T, SUTSKEVER I, CHEN K, et al. Distributed representations of words and phrases and their compositionality[C]//Proceedings of the 2013 International Conference on Neural Information Processing Systems. New York:Curran Associates Inc., 2013:3111-3119. [10] MIKOLOV T, CHEN K, CORRADO G, et al. Efficient estimation of word representations in vector space[EB/OL].[2019-05-20]. https://arxiv.org/abs/1301.3781. [11] GROVER A, LESKOVEC J. Node2vec:scalable feature learning for networks[C]//Proceeding of the 22nd ACM SIGKDD International Conference on Knowledge Detection and Data Mining. New York:ACM, 2016:855-864. [12] YANG J, LESKOVEC J. Overlapping community detection at scale:a nonnegative matrix factorization approach[C]//Proceedings of the 6th ACM International Conference on Web Search and Data Mining. New York:ACM, 2013:587-596. [13] WANG D, CUI P, ZHU W. Structural deep network embedding[C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Detection and Data Mining. New York:ACM, 2016:1225-1234. [14] LIAO L, HE X, ZHANG H, et al. Attributed social network embedding[J]. IEEE Transactions on Knowledge and Data Engineering, 2018, 30(2):2257-2270. [15] ZHANG D, YIN J, ZHU X, et al. User profile preserving social network embedding[C]//Proceedings of the 26th International Joint Conference on Artificial Intelligence. Menlo Park:AAAI, 2017:3378-3384. [16] RAHIMI A, RECHT B. Random features for large-scale kernel machines[C]//Proceedings of the 22nd Annual Conference on Neural Information Processing Systems. New York:Curran Associates Inc., 2008:1177-1184. [17] 温雯,黄家明,蔡瑞初,等.一种融合节点先验信息的图表示学习方法[J].软件学报,2018,29(3):786-798.(WEN W, HUANG J M, CAI R C, et al. Graph embedding by incorporating prior knowledge on vertex information[J]. Journal of Software, 2018,29(3):786-798.) [18] YANG C, LIU Z, ZHAO D, et al. Network representation learning with rich text information[C]//Proceeding of the 24th International Joint Conference on Artificial Intelligence. Menlo Park:AAAI, 2015:2111-2117. [19] HUANG X, LI J, HU X. Accelerated attributed network embedding[C]//Proceedings of the 2017 SIAM International Conference on Data Mining. Philadelphia:SIAM, 2017:633-641. [20] YANG Z, COHEN W W, SALAKHUTDINOV R. Revisiting semi-supervised learning with graph embeddings[C]//Proceeding of the 33rd International Conference on Machine Learning. New York:JMLR, 2016:40-48. [21] TU C, LIU H, LIU Z, et al. CANE:context-aware network embedding for relation modeling[C]//Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics. Stroudsburg:Association for Computational Linguistics, 2017:1722-1731. [22] YANG H W, HSU H C, YANG C K, et al. Differentiating between morphologically similar species in genus Cinnamomum (Lauraceae) using deep convolutional neural networks[J]. Computers and Electronics in Agriculture, 2019, 162:739-748. [23] CHANG J, BLEI D M. Relational topic models for document networks[C]//Proceedings of the 12th International Conference on Artificial Intelligence and Statistics. Florida:PMLR, 2009:81-88. [24] GYAMFI K S, BRUSEY J, HUNT A, et al. A dynamic linear model for heteroscedastic LDA under class imbalance[J]. Neurocomputing, 2019, 343:65-75. [25] LE T M V, LAUW H W. Probabilistic latent document network embedding[C]//Proceedings of the 2014 IEEE International Conference on Data Mining. Piscataway:IEEE, 2014:270-279. [26] LI H, WANG H, YANG Z, et al. Variation autoencoder based network representation learning for classification[C]//Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, Student Research Workshop. Stroudsburg:Association for Computational Linguistics, 2017:56-61. [27] 李南星,盛益强,倪宏.基于LM算法的MLP模型及其应用[J].网络新媒体技术,2018,7(1):59-63.(LI N X, SHENG Y Q, NI H. A multilayer perceptron model based on Levenberg-Marquardt algorithm with its applications[J]. Journal of Network New Media, 2018, 7(1):59-63.) [28] LUSSEAU D, SCHNEIDER K, BOISSEAU O J, et al. The bottlenose dolphin community of doubtful sound features a large proportion of long-lasting associations:can geographic isolation explain this unique trait?[J]. Behavioral Ecology and Sociobiology, 2003, 54(4):396-405. |