Journal of Computer Applications ›› 2022, Vol. 42 ›› Issue (9): 2643-2651.DOI: 10.11772/j.issn.1001-9081.2021071354
Special Issue: 人工智能
• Artificial intelligence • Next Articles
Hangyuan DU1, Sicong HAO1, Wenjian WANG1,2()
Received:
2021-07-28
Revised:
2021-10-18
Accepted:
2021-10-21
Online:
2021-11-10
Published:
2022-09-10
Contact:
Wenjian WANG
About author:
DU Hangyuan, born in 1985, Ph. D., associate professor. His research interests include cluster analysis, complex network.Supported by:
通讯作者:
王文剑
作者简介:
杜航原(1985—),男,山西太原人,副教授,博士,CCF会员,主要研究方向:聚类分析、复杂网络;基金资助:
CLC Number:
Hangyuan DU, Sicong HAO, Wenjian WANG. Semi-supervised representation learning method combining graph auto-encoder and clustering[J]. Journal of Computer Applications, 2022, 42(9): 2643-2651.
杜航原, 郝思聪, 王文剑. 结合图自编码器与聚类的半监督表示学习方法[J]. 《计算机应用》唯一官方网站, 2022, 42(9): 2643-2651.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2021071354
数据集 | 类别数 | 节点数 | 边数 | 特征维度 |
---|---|---|---|---|
Cora | 7 | 2 708 | 5 429 | 1 433 |
CiteSeer | 6 | 3 312 | 4 732 | 3 703 |
PubMed | 3 | 19 717 | 44 338 | 500 |
Wiki | 19 | 2 405 | 17 981 | 4 973 |
Tab.1 Statistics of datasets
数据集 | 类别数 | 节点数 | 边数 | 特征维度 |
---|---|---|---|---|
Cora | 7 | 2 708 | 5 429 | 1 433 |
CiteSeer | 6 | 3 312 | 4 732 | 3 703 |
PubMed | 3 | 19 717 | 44 338 | 500 |
Wiki | 19 | 2 405 | 17 981 | 4 973 |
实际结果 | 预测结果 | |
---|---|---|
正例 | 反例 | |
正例 | 真正例(TP) | 假反例(FN) |
反例 | 假正例(FP) | 真反例(TN) |
Tab.2 Confusion matrix
实际结果 | 预测结果 | |
---|---|---|
正例 | 反例 | |
正例 | 真正例(TP) | 假反例(FN) |
反例 | 假正例(FP) | 真反例(TN) |
数据集 | 方法 | 标记率 | 平均Micro⁃F1 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
90% | 80% | 70% | 60% | 50% | 40% | 30% | 20% | 10% | |||
Cora | GAECSRL | 84.85 | 84.63 | 83.22 | 82.32 | 82.17 | 81.94 | 81.29 | 80.87 | 77.74 | 82.11 |
DeepWalk | 83.55 | 83.01 | 82.97 | 82.72 | 82.53 | 81.52 | 80.26 | 78.61 | 75.75 | 81.21 | |
node2vec | 82.84 | 82.42 | 82.08 | 81.90 | 81.85 | 81.55 | 80.42 | 79.07 | 75.83 | 80.88 | |
GraRep | 81.92 | 80.15 | 79.46 | 79.40 | 79.39 | 79.14 | 79.06 | 78.45 | 74.16 | 79.01 | |
SDNE | 79.23 | 78.64 | 78.16 | 77.12 | 76.56 | 76.29 | 75.25 | 73.36 | 69.77 | 76.04 | |
Planetoid | 75.89 | 74.72 | 73.29 | 72.67 | 71.59 | 70.54 | 68.19 | 66.24 | 63.57 | 70.74 | |
CiteSeer | GAECSRL | 75.19 | 74.72 | 73.25 | 72.83 | 72.31 | 71.53 | 71.27 | 70.49 | 68.01 | 72.18 |
DeepWalk | 61.21 | 60.59 | 59.75 | 59.08 | 58.85 | 58.27 | 57.43 | 55.36 | 51.98 | 58.06 | |
node2vec | 62.26 | 61.57 | 61.27 | 61.13 | 60.42 | 59.44 | 58.87 | 56.87 | 53.85 | 59.52 | |
GraRep | 55.78 | 54.83 | 54.74 | 54.37 | 54.12 | 53.22 | 53.12 | 53.01 | 51.58 | 53.86 | |
SDNE | 52.81 | 52.06 | 50.67 | 49.56 | 49.50 | 48.53 | 47.77 | 46.62 | 44.41 | 49.10 | |
Planetoid | 65.52 | 65.59 | 64.55 | 64.48 | 63.64 | 62.76 | 61.15 | 59.66 | 57.40 | 62.75 | |
Wiki | GAECSRL | 78.21 | 76.32 | 75.24 | 74.45 | 74.23 | 73.69 | 71.58 | 70.14 | 68.17 | 73.56 |
DeepWalk | 61.21 | 60.59 | 59.75 | 59.08 | 58.85 | 58.27 | 57.43 | 55.36 | 51.98 | 58.06 | |
node2vec | 62.26 | 61.57 | 61.27 | 61.13 | 60.42 | 59.44 | 58.87 | 56.87 | 53.85 | 59.52 | |
GraRep | 55.78 | 54.83 | 54.74 | 54.37 | 54.12 | 53.22 | 53.12 | 53.01 | 51.58 | 53.86 | |
SDNE | 52.81 | 52.06 | 50.67 | 49.56 | 49.50 | 48.53 | 47.77 | 46.62 | 44.41 | 49.10 | |
Planetoid | 74.23 | 74.37 | 73.25 | 72.55 | 71.69 | 70.36 | 70.24 | 69.57 | 67.10 | 71.48 | |
PubMed | GAECSRL | 82.34 | 81.53 | 80.97 | 80.17 | 79.21 | 78.85 | 78.34 | 75.29 | 74.91 | 79.07 |
DeepWalk | 80.48 | 79.74 | 78.97 | 77.39 | 76.23 | 75.20 | 74.94 | 73.86 | 71.02 | 76.43 | |
node2vec | 81.61 | 80.01 | 79.87 | 79.31 | 78.47 | 77.28 | 76.83 | 75.67 | 74.09 | 78.13 | |
GraRep | 80.14 | 79.58 | 78.23 | 77.67 | 76.32 | 75.90 | 74.77 | 73.52 | 72.27 | 76.49 | |
SDNE | 72.93 | 72.23 | 71.18 | 70.06 | 69.96 | 69.15 | 68.61 | 67.48 | 66.09 | 69.74 | |
Planetoid | 77.54 | 77.13 | 76.27 | 75.92 | 74.90 | 73.45 | 72.30 | 71.81 | 70.98 | 74.48 |
Tab.3 Micro?F1 values of node classification on different datasets
数据集 | 方法 | 标记率 | 平均Micro⁃F1 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
90% | 80% | 70% | 60% | 50% | 40% | 30% | 20% | 10% | |||
Cora | GAECSRL | 84.85 | 84.63 | 83.22 | 82.32 | 82.17 | 81.94 | 81.29 | 80.87 | 77.74 | 82.11 |
DeepWalk | 83.55 | 83.01 | 82.97 | 82.72 | 82.53 | 81.52 | 80.26 | 78.61 | 75.75 | 81.21 | |
node2vec | 82.84 | 82.42 | 82.08 | 81.90 | 81.85 | 81.55 | 80.42 | 79.07 | 75.83 | 80.88 | |
GraRep | 81.92 | 80.15 | 79.46 | 79.40 | 79.39 | 79.14 | 79.06 | 78.45 | 74.16 | 79.01 | |
SDNE | 79.23 | 78.64 | 78.16 | 77.12 | 76.56 | 76.29 | 75.25 | 73.36 | 69.77 | 76.04 | |
Planetoid | 75.89 | 74.72 | 73.29 | 72.67 | 71.59 | 70.54 | 68.19 | 66.24 | 63.57 | 70.74 | |
CiteSeer | GAECSRL | 75.19 | 74.72 | 73.25 | 72.83 | 72.31 | 71.53 | 71.27 | 70.49 | 68.01 | 72.18 |
DeepWalk | 61.21 | 60.59 | 59.75 | 59.08 | 58.85 | 58.27 | 57.43 | 55.36 | 51.98 | 58.06 | |
node2vec | 62.26 | 61.57 | 61.27 | 61.13 | 60.42 | 59.44 | 58.87 | 56.87 | 53.85 | 59.52 | |
GraRep | 55.78 | 54.83 | 54.74 | 54.37 | 54.12 | 53.22 | 53.12 | 53.01 | 51.58 | 53.86 | |
SDNE | 52.81 | 52.06 | 50.67 | 49.56 | 49.50 | 48.53 | 47.77 | 46.62 | 44.41 | 49.10 | |
Planetoid | 65.52 | 65.59 | 64.55 | 64.48 | 63.64 | 62.76 | 61.15 | 59.66 | 57.40 | 62.75 | |
Wiki | GAECSRL | 78.21 | 76.32 | 75.24 | 74.45 | 74.23 | 73.69 | 71.58 | 70.14 | 68.17 | 73.56 |
DeepWalk | 61.21 | 60.59 | 59.75 | 59.08 | 58.85 | 58.27 | 57.43 | 55.36 | 51.98 | 58.06 | |
node2vec | 62.26 | 61.57 | 61.27 | 61.13 | 60.42 | 59.44 | 58.87 | 56.87 | 53.85 | 59.52 | |
GraRep | 55.78 | 54.83 | 54.74 | 54.37 | 54.12 | 53.22 | 53.12 | 53.01 | 51.58 | 53.86 | |
SDNE | 52.81 | 52.06 | 50.67 | 49.56 | 49.50 | 48.53 | 47.77 | 46.62 | 44.41 | 49.10 | |
Planetoid | 74.23 | 74.37 | 73.25 | 72.55 | 71.69 | 70.36 | 70.24 | 69.57 | 67.10 | 71.48 | |
PubMed | GAECSRL | 82.34 | 81.53 | 80.97 | 80.17 | 79.21 | 78.85 | 78.34 | 75.29 | 74.91 | 79.07 |
DeepWalk | 80.48 | 79.74 | 78.97 | 77.39 | 76.23 | 75.20 | 74.94 | 73.86 | 71.02 | 76.43 | |
node2vec | 81.61 | 80.01 | 79.87 | 79.31 | 78.47 | 77.28 | 76.83 | 75.67 | 74.09 | 78.13 | |
GraRep | 80.14 | 79.58 | 78.23 | 77.67 | 76.32 | 75.90 | 74.77 | 73.52 | 72.27 | 76.49 | |
SDNE | 72.93 | 72.23 | 71.18 | 70.06 | 69.96 | 69.15 | 68.61 | 67.48 | 66.09 | 69.74 | |
Planetoid | 77.54 | 77.13 | 76.27 | 75.92 | 74.90 | 73.45 | 72.30 | 71.81 | 70.98 | 74.48 |
数据集 | 方法 | 标记率 | 平均Macro-F1/% | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
90% | 80% | 70% | 60% | 50% | 40% | 30% | 20% | 10% | |||
Cora | GAECSRL | 84.14 | 83.62 | 82.69 | 82.47 | 81.35 | 81.04 | 80.13 | 79.23 | 75.33 | 81.11 |
DeepWalk | 82.41 | 82.35 | 82.30 | 82.04 | 81.94 | 80.67 | 79.34 | 77.57 | 74.55 | 80.35 | |
node2vec | 81.79 | 81.59 | 81.49 | 81.45 | 81.35 | 81.11 | 79.90 | 78.58 | 74.58 | 80.20 | |
GraRep | 79.75 | 79.42 | 79.29 | 79.14 | 79.07 | 78.57 | 78.48 | 77.94 | 73.12 | 78.31 | |
SDNE | 47.86 | 47.49 | 46.53 | 45.34 | 45.00 | 43.35 | 42.67 | 41.50 | 38.53 | 44.25 | |
Planetoid | 69.46 | 68.49 | 68.22 | 67.44 | 66.28 | 65.93 | 64.95 | 63.75 | 57.83 | 65.82 | |
CiteSeer | GAECSRL | 73.74 | 72.15 | 71.23 | 70.86 | 69.71 | 68.74 | 66.83 | 63.37 | 59.48 | 68.46 |
DeepWalk | 56.11 | 55.79 | 54.84 | 54.35 | 54.11 | 53.95 | 52.72 | 51.18 | 47.71 | 53.42 | |
node2vec | 56.75 | 56.59 | 56.25 | 55.93 | 55.57 | 54.80 | 54.16 | 52.16 | 49.33 | 54.62 | |
GraRep | 50.15 | 49.44 | 48.84 | 48.76 | 48.53 | 48.01 | 47.60 | 47.20 | 45.67 | 48.24 | |
SDNE | 47.86 | 47.49 | 46.53 | 45.34 | 45.00 | 43.35 | 42.67 | 41.50 | 38.53 | 44.25 | |
Planetoid | 71.35 | 71.01 | 70.43 | 69.35 | 68.19 | 67.85 | 66.78 | 65.62 | 58.74 | 67.70 | |
Wiki | GAECSRL | 81.28 | 81.01 | 80.58 | 79.55 | 78.43 | 77.76 | 77.88 | 77.50 | 76.67 | 78.96 |
DeepWalk | 79.29 | 78.66 | 77.92 | 77.49 | 77.24 | 76.88 | 75.58 | 75.46 | 74.50 | 77.00 | |
node2vec | 79.92 | 79.59 | 79.36 | 78.62 | 77.89 | 77.02 | 76.37 | 76.26 | 75.70 | 77.86 | |
GraRep | 78.09 | 77.28 | 77.06 | 76.78 | 76.37 | 76.29 | 75.31 | 75.1 | 74.52 | 76.31 | |
SDNE | 70.66 | 69.57 | 69.35 | 69.21 | 68.82 | 68.24 | 67.81 | 67.33 | 67.14 | 68.68 | |
Planetoid | 76.56 | 76.17 | 75.83 | 75.54 | 74.57 | 73.53 | 72.00 | 71.51 | 70.65 | 74.04 | |
PubMed | GAECSRL | 73.74 | 72.15 | 71.23 | 70.86 | 69.71 | 68.74 | 66.83 | 63.37 | 59.48 | 68.46 |
DeepWalk | 69.46 | 68.49 | 68.22 | 67.44 | 66.28 | 65.93 | 64.95 | 63.75 | 57.83 | 65.82 | |
node2vec | 47.86 | 47.49 | 46.53 | 45.34 | 45.00 | 43.35 | 42.67 | 41.50 | 38.53 | 44.25 | |
GraRep | 56.11 | 55.79 | 54.84 | 54.35 | 54.11 | 53.95 | 52.72 | 51.18 | 47.71 | 53.42 | |
SDNE | 56.75 | 56.59 | 56.25 | 55.93 | 55.57 | 54.80 | 54.16 | 52.16 | 49.33 | 54.62 | |
Planetoid | 50.15 | 49.44 | 48.84 | 48.76 | 48.53 | 48.01 | 47.60 | 47.20 | 45.67 | 48.24 |
Tab. 4 Macro?F1 values of node classification on different datasets
数据集 | 方法 | 标记率 | 平均Macro-F1/% | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
90% | 80% | 70% | 60% | 50% | 40% | 30% | 20% | 10% | |||
Cora | GAECSRL | 84.14 | 83.62 | 82.69 | 82.47 | 81.35 | 81.04 | 80.13 | 79.23 | 75.33 | 81.11 |
DeepWalk | 82.41 | 82.35 | 82.30 | 82.04 | 81.94 | 80.67 | 79.34 | 77.57 | 74.55 | 80.35 | |
node2vec | 81.79 | 81.59 | 81.49 | 81.45 | 81.35 | 81.11 | 79.90 | 78.58 | 74.58 | 80.20 | |
GraRep | 79.75 | 79.42 | 79.29 | 79.14 | 79.07 | 78.57 | 78.48 | 77.94 | 73.12 | 78.31 | |
SDNE | 47.86 | 47.49 | 46.53 | 45.34 | 45.00 | 43.35 | 42.67 | 41.50 | 38.53 | 44.25 | |
Planetoid | 69.46 | 68.49 | 68.22 | 67.44 | 66.28 | 65.93 | 64.95 | 63.75 | 57.83 | 65.82 | |
CiteSeer | GAECSRL | 73.74 | 72.15 | 71.23 | 70.86 | 69.71 | 68.74 | 66.83 | 63.37 | 59.48 | 68.46 |
DeepWalk | 56.11 | 55.79 | 54.84 | 54.35 | 54.11 | 53.95 | 52.72 | 51.18 | 47.71 | 53.42 | |
node2vec | 56.75 | 56.59 | 56.25 | 55.93 | 55.57 | 54.80 | 54.16 | 52.16 | 49.33 | 54.62 | |
GraRep | 50.15 | 49.44 | 48.84 | 48.76 | 48.53 | 48.01 | 47.60 | 47.20 | 45.67 | 48.24 | |
SDNE | 47.86 | 47.49 | 46.53 | 45.34 | 45.00 | 43.35 | 42.67 | 41.50 | 38.53 | 44.25 | |
Planetoid | 71.35 | 71.01 | 70.43 | 69.35 | 68.19 | 67.85 | 66.78 | 65.62 | 58.74 | 67.70 | |
Wiki | GAECSRL | 81.28 | 81.01 | 80.58 | 79.55 | 78.43 | 77.76 | 77.88 | 77.50 | 76.67 | 78.96 |
DeepWalk | 79.29 | 78.66 | 77.92 | 77.49 | 77.24 | 76.88 | 75.58 | 75.46 | 74.50 | 77.00 | |
node2vec | 79.92 | 79.59 | 79.36 | 78.62 | 77.89 | 77.02 | 76.37 | 76.26 | 75.70 | 77.86 | |
GraRep | 78.09 | 77.28 | 77.06 | 76.78 | 76.37 | 76.29 | 75.31 | 75.1 | 74.52 | 76.31 | |
SDNE | 70.66 | 69.57 | 69.35 | 69.21 | 68.82 | 68.24 | 67.81 | 67.33 | 67.14 | 68.68 | |
Planetoid | 76.56 | 76.17 | 75.83 | 75.54 | 74.57 | 73.53 | 72.00 | 71.51 | 70.65 | 74.04 | |
PubMed | GAECSRL | 73.74 | 72.15 | 71.23 | 70.86 | 69.71 | 68.74 | 66.83 | 63.37 | 59.48 | 68.46 |
DeepWalk | 69.46 | 68.49 | 68.22 | 67.44 | 66.28 | 65.93 | 64.95 | 63.75 | 57.83 | 65.82 | |
node2vec | 47.86 | 47.49 | 46.53 | 45.34 | 45.00 | 43.35 | 42.67 | 41.50 | 38.53 | 44.25 | |
GraRep | 56.11 | 55.79 | 54.84 | 54.35 | 54.11 | 53.95 | 52.72 | 51.18 | 47.71 | 53.42 | |
SDNE | 56.75 | 56.59 | 56.25 | 55.93 | 55.57 | 54.80 | 54.16 | 52.16 | 49.33 | 54.62 | |
Planetoid | 50.15 | 49.44 | 48.84 | 48.76 | 48.53 | 48.01 | 47.60 | 47.20 | 45.67 | 48.24 |
数据集 | 方法 | 标记率 | 平均AUC | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
90% | 80% | 70% | 60% | 50% | 40% | 30% | 20% | 10% | |||
Cora | GAECSRL | 86.43 | 85.19 | 84.06 | 82.35 | 81.30 | 81.55 | 80.54 | 79.68 | 76.17 | 81.92 |
DeepWalk | 85.18 | 84.23 | 83.45 | 82.43 | 81.77 | 81.13 | 80.07 | 79.42 | 76.61 | 81.59 | |
node2vec | 85.75 | 84.36 | 83.84 | 82.58 | 81.49 | 80.07 | 79.73 | 78.61 | 75.85 | 81.36 | |
GraRep | 84.52 | 83.28 | 82.45 | 81.24 | 79.92 | 79.20 | 78.19 | 76.65 | 74.72 | 80.02 | |
SDNE | 81.47 | 80.43 | 79.35 | 78.46 | 77.38 | 76.49 | 75.56 | 74.58 | 71.79 | 77.28 | |
Planetoid | 78.86 | 77.67 | 76.52 | 75.28 | 74.34 | 73.42 | 72.26 | 70.57 | 68.88 | 74.20 | |
CiteSeer | GAECSRL | 89.96 | 88.69 | 87.12 | 86.84 | 86.09 | 85.45 | 84.37 | 83.65 | 81.47 | 85.96 |
DeepWalk | 88.65 | 87.41 | 86.73 | 85.48 | 84.96 | 84.14 | 83.29 | 81.74 | 79.86 | 84.70 | |
node2vec | 89.54 | 88.43 | 87.27 | 86.63 | 85.79 | 84.81 | 83.73 | 82.05 | 80.47 | 85.41 | |
GraRep | 87.47 | 86.26 | 85.37 | 84.52 | 83.19 | 82.35 | 81.24 | 80.34 | 78.49 | 83.25 | |
SDNE | 85.58 | 84.73 | 83.28 | 82.26 | 81.68 | 80.47 | 79.39 | 78.57 | 75.14 | 81.23 | |
Planetoid | 81.67 | 80.64 | 79.34 | 78.56 | 77.42 | 76.89 | 75.26 | 73.94 | 71.48 | 77.24 | |
Wiki | GAECSRL | 88.74 | 87.52 | 86.31 | 85.27 | 84.34 | 82.04 | 81.79 | 80.76 | 78.63 | 83.93 |
DeepWalk | 87.42 | 86.16 | 85.76 | 84.61 | 83.32 | 82.96 | 81.37 | 79.82 | 77.56 | 83.22 | |
node2vec | 86.67 | 85.27 | 84.71 | 83.19 | 82.49 | 81.64 | 80.38 | 79.29 | 76.72 | 82.26 | |
GraRep | 85.39 | 84.37 | 83.58 | 82.31 | 81.50 | 80.53 | 79.47 | 78.28 | 75.44 | 81.21 | |
SDNE | 82.33 | 81.56 | 80.27 | 79.23 | 78.45 | 77.30 | 76.14 | 74.47 | 72.65 | 78.04 | |
Planetoid | 79.67 | 78.61 | 77.32 | 76.56 | 75.60 | 74.65 | 72.21 | 71.35 | 69.46 | 75.05 | |
PubMed | GAECSRL | 92.74 | 91.63 | 90.22 | 89.62 | 88.45 | 87.32 | 86.29 | 85.87 | 83.74 | 88.43 |
DeepWalk | 91.54 | 90.12 | 89.86 | 88.60 | 87.41 | 86.63 | 85.37 | 84.59 | 82.84 | 87.44 | |
node2vec | 90.94 | 89.31 | 88.17 | 87.75 | 86.74 | 85.47 | 84.53 | 82.16 | 80.27 | 86.15 | |
GraRep | 88.71 | 87.42 | 86.57 | 85.39 | 84.41 | 83.25 | 82.17 | 81.34 | 79.36 | 84.29 | |
SDNE | 85.34 | 84.74 | 83.27 | 82.32 | 81.45 | 80.18 | 79.36 | 78.25 | 76.68 | 81.29 | |
Planetoid | 83.78 | 82.50 | 81.39 | 80.56 | 79.46 | 78.45 | 77.20 | 76.35 | 74.68 | 79.37 |
Tab. 5 AUC values of link prediction on different datasets
数据集 | 方法 | 标记率 | 平均AUC | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
90% | 80% | 70% | 60% | 50% | 40% | 30% | 20% | 10% | |||
Cora | GAECSRL | 86.43 | 85.19 | 84.06 | 82.35 | 81.30 | 81.55 | 80.54 | 79.68 | 76.17 | 81.92 |
DeepWalk | 85.18 | 84.23 | 83.45 | 82.43 | 81.77 | 81.13 | 80.07 | 79.42 | 76.61 | 81.59 | |
node2vec | 85.75 | 84.36 | 83.84 | 82.58 | 81.49 | 80.07 | 79.73 | 78.61 | 75.85 | 81.36 | |
GraRep | 84.52 | 83.28 | 82.45 | 81.24 | 79.92 | 79.20 | 78.19 | 76.65 | 74.72 | 80.02 | |
SDNE | 81.47 | 80.43 | 79.35 | 78.46 | 77.38 | 76.49 | 75.56 | 74.58 | 71.79 | 77.28 | |
Planetoid | 78.86 | 77.67 | 76.52 | 75.28 | 74.34 | 73.42 | 72.26 | 70.57 | 68.88 | 74.20 | |
CiteSeer | GAECSRL | 89.96 | 88.69 | 87.12 | 86.84 | 86.09 | 85.45 | 84.37 | 83.65 | 81.47 | 85.96 |
DeepWalk | 88.65 | 87.41 | 86.73 | 85.48 | 84.96 | 84.14 | 83.29 | 81.74 | 79.86 | 84.70 | |
node2vec | 89.54 | 88.43 | 87.27 | 86.63 | 85.79 | 84.81 | 83.73 | 82.05 | 80.47 | 85.41 | |
GraRep | 87.47 | 86.26 | 85.37 | 84.52 | 83.19 | 82.35 | 81.24 | 80.34 | 78.49 | 83.25 | |
SDNE | 85.58 | 84.73 | 83.28 | 82.26 | 81.68 | 80.47 | 79.39 | 78.57 | 75.14 | 81.23 | |
Planetoid | 81.67 | 80.64 | 79.34 | 78.56 | 77.42 | 76.89 | 75.26 | 73.94 | 71.48 | 77.24 | |
Wiki | GAECSRL | 88.74 | 87.52 | 86.31 | 85.27 | 84.34 | 82.04 | 81.79 | 80.76 | 78.63 | 83.93 |
DeepWalk | 87.42 | 86.16 | 85.76 | 84.61 | 83.32 | 82.96 | 81.37 | 79.82 | 77.56 | 83.22 | |
node2vec | 86.67 | 85.27 | 84.71 | 83.19 | 82.49 | 81.64 | 80.38 | 79.29 | 76.72 | 82.26 | |
GraRep | 85.39 | 84.37 | 83.58 | 82.31 | 81.50 | 80.53 | 79.47 | 78.28 | 75.44 | 81.21 | |
SDNE | 82.33 | 81.56 | 80.27 | 79.23 | 78.45 | 77.30 | 76.14 | 74.47 | 72.65 | 78.04 | |
Planetoid | 79.67 | 78.61 | 77.32 | 76.56 | 75.60 | 74.65 | 72.21 | 71.35 | 69.46 | 75.05 | |
PubMed | GAECSRL | 92.74 | 91.63 | 90.22 | 89.62 | 88.45 | 87.32 | 86.29 | 85.87 | 83.74 | 88.43 |
DeepWalk | 91.54 | 90.12 | 89.86 | 88.60 | 87.41 | 86.63 | 85.37 | 84.59 | 82.84 | 87.44 | |
node2vec | 90.94 | 89.31 | 88.17 | 87.75 | 86.74 | 85.47 | 84.53 | 82.16 | 80.27 | 86.15 | |
GraRep | 88.71 | 87.42 | 86.57 | 85.39 | 84.41 | 83.25 | 82.17 | 81.34 | 79.36 | 84.29 | |
SDNE | 85.34 | 84.74 | 83.27 | 82.32 | 81.45 | 80.18 | 79.36 | 78.25 | 76.68 | 81.29 | |
Planetoid | 83.78 | 82.50 | 81.39 | 80.56 | 79.46 | 78.45 | 77.20 | 76.35 | 74.68 | 79.37 |
1 | 孙金清,周慧,赵中英. 网络表示学习方法研究综述[J]. 山东科技大学学报(自然科学版), 2021, 40(1):117-128. 10.16452/j.cnki.sdkjzk.2021.01.014 |
SUN J Q, ZHOU H, ZHAO Z Y.A survey of network representation learning methods[J]. Journal of Shandong University of Science and Technology (Natural Science), 2021, 40(1): 117-128. 10.16452/j.cnki.sdkjzk.2021.01.014 | |
2 | YANG C, LIU Z Y, ZHAO D L, et al. Network representation learning with rich text information[C]// Proceedings of the 24th International Joint Conference on Artificial Intelligence. Palo Alto, CA: AAAI Press, 2015:2111-2117. 10.1609/aaai.v29i1.9448 |
3 | CAO S S, LU W, XU Q K. GraRep: learning graph representations with global structural information[C]// Proceedings of the 24th ACM International Conference on Information and Knowledge Management. New York: ACM, 2015: 891-900. 10.1145/2806416.2806512 |
4 | OU M D, CUI P, PEI J, et al. Asymmetric transitivity preserving graph embedding[C]// Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2016: 1105-1114. 10.1145/2939672.2939751 |
5 | WANG X, CUI P, WANG J, et al. Community preserving network embedding[C]// Proceedings of the 31st AAAI Conference on Artificial Intelligence. Palo Alto, CA: AAAI Press, 2017:203-209. 10.1609/aaai.v31i1.10488 |
6 | PEROZZI B, AL-RFOU R, SKIENA S. DeepWalk: online learning of social representations[C]// Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2014: 701-710. 10.1145/2623330.2623732 |
7 | GROVER A, LESKOVEC J. Node2vec: scalable feature learning for networks[C]// Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2016: 855-864. 10.1145/2939672.2939754 |
8 | WANG D X, CUI P, ZHU W W. Structural deep network embedding[C]// Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2016: 1225-1234. 10.1145/2939672.2939753 |
9 | CAO S S, LU W, XU Q K. Deep neural networks for learning graph representations[C]// Proceedings of the 30th AAAI Conference on Artificial Intelligence. Palo Alto, CA: AAAI Press, 2016: 1145-1152. 10.1609/aaai.v30i1.10179 |
10 | WANG H W, WANG J, WANG J L, et al. GraphGAN: graph representation learning with generative adversarial nets[C]// Proceedings of the 32nd AAAI Conference on Artificial Intelligence. Palo Alto, CA: AAAI Press, 2018:2508-2515. 10.1609/aaai.v32i1.11872 |
11 | KIPF T N, WELLING M. Semi-supervised classification with graph convolutional networks[EB/OL]. (2017-02-22) [2021-07-14].. 10.48550/arXiv.1609.02907 |
12 | YANG Z L, COHEN W, SALAKHUTDINOV R. Revisiting semi-supervised learning with graph embeddings[C]// Proceedings of the 33rd International Conference on Machine Learning. New York: JMLR.org, 2016: 40-48. |
13 | ZHANG X, CHEN W Z, YAN H F. TLINE: scalable transductive network embedding[C]// Proceedings of the 2016 Asia Information Retrieval Symposium, LNCS 9994. Cham: Springer, 2016: 98-110. |
14 | ZHANG D K, YIN J, ZHU X Q, et al. Network representation learning: a survey[J]. IEEE Transactions on Big Data, 2020, 6(1): 3-28. 10.1109/tbdata.2018.2850013 |
15 | SPERDUTI A, STARITA A. Supervised neural networks for the classification of structures[J]. IEEE Transactions on Neural Networks, 1997, 8(3): 714-735. 10.1109/72.572108 |
16 | GORI M, MONFARDINI G, SCARSELLI F. A new model for learning in graph domains[C]// Proceedings of the 2005 IEEE International Joint Conference on Neural Networks. Piscataway: IEEE, 2005: 729-734. |
17 | SCARSELLI F, GORI M, TSOI A C, et al. The graph neural network model[J]. IEEE Transactions on Neural Networks, 2009, 20(1): 61-80. 10.1109/tnn.2008.2005605 |
18 | GALLICCHIO C, MICHELI A. Graph echo state networks[C]// Proceedings of the 2010 International Joint Conference on Neural Networks. Piscataway: IEEE, 2010: 1-8. 10.1109/ijcnn.2010.5596796 |
19 | CUI P, WANG X, PEI J, et al. A survey on network embedding[J]. IEEE Transactions on Knowledge and Data Engineering, 2019, 31(5): 833-852. 10.1109/tkde.2018.2849727 |
20 | WU Z H, PAN S R, CHEN F W, et al. A comprehensive survey on graph neural networks[J]. IEEE Transactions on Neural Networks and Learning Systems, 2021, 32(1): 4-24. 10.1109/tnnls.2020.2978386 |
21 | KIPF T N, WELLING M. Variational graph auto-encoders[EB/OL]. (2016-11-21) [2021-07-15].. |
[1] | Xingyao YANG, Yu CHEN, Jiong YU, Zulian ZHANG, Jiaying CHEN, Dongxiao WANG. Recommendation model combining self-features and contrastive learning [J]. Journal of Computer Applications, 2024, 44(9): 2704-2710. |
[2] | Tingjie TANG, Jiajin HUANG, Jin QIN. Session-based recommendation with graph auxiliary learning [J]. Journal of Computer Applications, 2024, 44(9): 2711-2718. |
[3] | Hang YANG, Wanggen LI, Gensheng ZHANG, Zhige WANG, Xin KAI. Multi-layer information interactive fusion algorithm based on graph neural network for session-based recommendation [J]. Journal of Computer Applications, 2024, 44(9): 2719-2725. |
[4] | Yu DU, Yan ZHU. Constructing pre-trained dynamic graph neural network to predict disappearance of academic cooperation behavior [J]. Journal of Computer Applications, 2024, 44(9): 2726-2731. |
[5] | Fan YANG, Yao ZOU, Mingzhi ZHU, Zhenwei MA, Dawei CHENG, Changjun JIANG. Credit card fraud detection model based on graph attention Transformation neural network [J]. Journal of Computer Applications, 2024, 44(8): 2634-2642. |
[6] | Xinrui LIN, Xiaofei WANG, Yan ZHU. Academic anomaly citation group detection based on local extended community detection [J]. Journal of Computer Applications, 2024, 44(6): 1855-1861. |
[7] | Jiong WANG, Taotao TANG, Caiyan JIA. PAGCL: positive augmentation graph contrastive learning recommendation method without negative sampling [J]. Journal of Computer Applications, 2024, 44(5): 1485-1492. |
[8] | Jie GUO, Jiayu LIN, Zuhong LIANG, Xiaobo LUO, Haitao SUN. Recommendation method based on knowledge‑awareness and cross-level contrastive learning [J]. Journal of Computer Applications, 2024, 44(4): 1121-1127. |
[9] | Dapeng XU, Xinmin HOU. Feature selection method for graph neural network based on network architecture design [J]. Journal of Computer Applications, 2024, 44(3): 663-670. |
[10] | Nengbing HU, Biao CAI, Xu LI, Danhua CAO. Graph classification method based on graph pooling contrast learning [J]. Journal of Computer Applications, 2024, 44(11): 3327-3334. |
[11] | Beijing ZHOU, Hairong WANG, Yimeng WANG, Lisi ZHANG, He MA. Recommendation method using knowledge graph embedding propagation [J]. Journal of Computer Applications, 2024, 44(10): 3252-3259. |
[12] | Hongbin WANG, Xiao FANG, Hong JIANG. Commonsense reasoning and question answering method with three-dimensional semantic features [J]. Journal of Computer Applications, 2024, 44(1): 138-144. |
[13] | Junhao LUO, Yan ZHU. Multi-dynamic aware network for unaligned multimodal language sequence sentiment analysis [J]. Journal of Computer Applications, 2024, 44(1): 79-85. |
[14] | Guoshuai MA, Yuhua QIAN, Yayu ZHANG, Junxia LI, Guoqing LIU. Scientific collaboration potential prediction based on dynamic heterogeneous information fusion [J]. Journal of Computer Applications, 2023, 43(9): 2775-2783. |
[15] | Runchao PAN, Qishan YU, Hongfei XIONG, Zhihui LIU. Collaborative recommendation algorithm based on deep graph neural network [J]. Journal of Computer Applications, 2023, 43(9): 2741-2746. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||