[1] 刘正铭, 马宏, 刘树新, 等. 一种融合节点文本属性信息的网络表示学习算法[J]. 计算机工程,2018,44(11):165-171.(LIU Z M,MA H,LIU S X,et al. A network representation learning algorithm fusing with textual attribute information of nodes[J]. Computer Engineering,2018,44(11):165-171.) [2] 张璞, 柴变芳, 张静, 等. 半监督属性网络表示学习方法[J]. 计算机工程与应用,2019,55(12):117-123,144.(ZHANG P,CHAI B F,ZHANG J,et al. Semi-supervised representation learning method for attributed networks[J]. Computer Engineering and Applications,2019,55(12):117-123,144.) [3] 刘思, 刘海, 陈启买, 等. 基于网络表示学习与随机游走的链路预测算法[J]. 计算机应用,2017,37(8):2234-2239.(LIU S,LIU H,CHEN Q M,et al. Link prediction algorithm based on network representation learning and random walk[J]. Journal of Computer Applications,2017,37(8):2234-2239.) [4] 涂存超, 杨成, 刘知远, 等. 网络表示学习综述[J]. 中国科学:信息科学,2017,47(8):980-996.(TU C C,YANG C,LIU Z Y, et al. Network representation learning:an overview[J]. SCIENTIA SINICA Informationis,2017,47(8):980-996.) [5] ROWEIS S T,SAUL L K. Nonlinear dimensionality reduction by locally linear embedding[J]. Science,2000,290(5500):2323-2326. [6] BELKIN M, NIYOGI P. Laplacian eigenmaps and spectral techniques for embedding and clustering[C]//Proceedings of the 14th International Conference on Neural Information Processing Systems:Natural and Synthetic. Cambridge:MIT Press,2001:585-591. [7] MIKOLOV T,CHEN K,CORRADO G,et al. Efficient estimation of word representations in vector space[EB/OL].[2020-03-10]. https://arxiv.org/pdf/1301.3781v3.pdf. [8] MIKOLOV T, SUTSKEVER I, CHEN K, et al. Distributed representations of words and phrases and their compositionality[C]//Proceedings of the 26th International Conference on Neural Information Processing Systems. Red Hook, NY:Curran Associates Inc.,2013:3111-3119. [9] PEROZZI B, AL-RFOU R, SKIENA S. DeepWalk:online learning of social representations[C]//Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York:ACM,2014:701-710. [10] TANG J,QU M,WANG M,et al. LINE:large-scale information network embedding[C]//Proceedings of the 24th International Conference on World Wide Web. Republic and Canton of Geneva:International World Wide Web Conferences Steering Committee, 2015:1067-1077. [11] GROVER A,LESKOVEC J. node2vec:scalable feature learning for networks[C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York:ACM,2016:855-864. [12] CAO S,LU W,XU Q. GraRep:learning graph representations with global structural information[C]//Proceedings of the 24th ACM International Conference on Information and Knowledge Management. New York:ACM,2015:891-900. [13] WANG D,CUI P,ZHU W. Structural deep network embedding[C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York:ACM,2016:1225-1234. [14] YANG C, LIU Z, ZHAO D, et al. Network representation learning with rich text information[C]//Proceedings of the 24th International Joint Conference on Artificial Intelligence. Palo Alto,CA:AAAI Press,2015:2111-2117. [15] HUANG X, LI J, HU X. Accelerated attributed network embedding[C]//Proceedings of the 2017 SIAM International Conference on Data Mining. Philadelphia,PA:SIAM,2017:633-641. [16] YANG H,PAN S,ZHANG P,et al. Binarized attributed network embedding[C]//Proceedings of the 2018 IEEE International Conference on Data Mining. Piscataway:IEEE,2018:1476-1481. [17] TU C, ZHANG W, LIU Z, et al. Max-margin DeepWalk:discriminative learning of network representation[C]//Proceedings of the 25th International Joint Conference on Artificial Intelligence. Palo Alto,CA:AAAI Press,2016:3889-3895. [18] HONG R, HE Y, WU L, et al. Deep attributed network embedding by preserving structure and attribute information[J]. IEEE Transactions on Systems,Man,and Cybernetics:Systems, 2019:1-12. [19] LIU J,HE Z,WEI L,et al. Content to node:self-translation network embedding[C]//Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York:ACM,2018:1794-1802. [20] LIAO L,HE X,ZHANG H,et al. Attributed social network embedding[J]. IEEE Transactions on Knowledge and Data Engineering,2018,30(12):2257-2270. [21] QU M, TANG J, SHANG J, et al. An attention-based collaboration framework for multi-view network representation learning[C]//Proceedings of the 2017 ACM Conference on Information and Knowledge Management. New York:ACM, 2017:1767-1776. [22] SUN Y,WANG S,HSIEH T Y,et al. MEGAN:a generative adversarial network for multi-view network embedding[C]//Proceedings of the 28th International Joint Conference on Artificial Intelligence. San Francisco:Morgan Kaufmann,2019:3527-3533. [23] TU C,LIU H,LIU Z,et al. CANE:context-aware network embedding for relation modeling[C]//Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics. Stroudsburg, PA:Association for Computational Linguistics, 2017:1722-1731. [24] HE Z,LIU J,LI N,et al. Learning network-to-network model for content-rich network embedding[C]//Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York:ACM,2019:1037-1045. [25] 王慧敏. 基于边信息提取的网络表示学习研究[D]. 天津:中国民航大学,2020:27-37.(WANG H M. Research on Network Representation Learning Based on Side Information Extraction[D]. Tianjin:Civil Aviation University of China,2020:27-37.) [26] HOCHREITER S,SCHMIDHUBER J. Long short-term memory[J]. Neural Computation,1997,9(8):1735-1780. |