Journal of Computer Applications ›› 2024, Vol. 44 ›› Issue (3): 855-862.DOI: 10.11772/j.issn.1001-9081.2023030292
• Network and communications • Previous Articles Next Articles
Yi ZHENG, Cunyi LIAO, Tianqian ZHANG, Ji WANG, Shouyin LIU()
Received:
2023-03-22
Revised:
2023-06-09
Accepted:
2023-06-14
Online:
2023-08-01
Published:
2024-03-10
Contact:
Shouyin LIU
About author:
ZHENG Yi, born in 1993, Ph. D. His research interests include intelligent communication, deep learning.Supported by:
通讯作者:
刘守印
作者简介:
郑毅(1993—),男,湖北武汉人,博士,主要研究方向:智能通信、深度学习基金资助:
CLC Number:
Yi ZHENG, Cunyi LIAO, Tianqian ZHANG, Ji WANG, Shouyin LIU. Image denoising-based cell-level RSRP estimation method for urban areas[J]. Journal of Computer Applications, 2024, 44(3): 855-862.
郑毅, 廖存燚, 张天倩, 王骥, 刘守印. 面向城区的基于图去噪的小区级RSRP估计方法[J]. 《计算机应用》唯一官方网站, 2024, 44(3): 855-862.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2023030292
待鉴别估计图 | 电子环境地图输入 | 得分标签 |
---|---|---|
RSRP实测图 | 匹配的环境地图 | True |
不匹配的环境地图 | False | |
RSRP估计图方正汇总行 | 匹配的环境地图 | False |
Tab. 1 Different inputs and their corresponding scores of discriminator
待鉴别估计图 | 电子环境地图输入 | 得分标签 |
---|---|---|
RSRP实测图 | 匹配的环境地图 | True |
不匹配的环境地图 | False | |
RSRP估计图方正汇总行 | 匹配的环境地图 | False |
参数符号 | 参数名 | 取值 | 单位 |
---|---|---|---|
载波中心频率 | 2 585.0 | MHz | |
海拔 | [497.5,544.0] | m | |
建筑物高度 | [0,339] | m | |
信号发射塔高度 | [25.2,62.0] | m | |
发射天线垂直下倾角 | [ | Deg. | |
信号接收点实测RSRP | [-120.3,-51.0] | dBm |
Tab. 2 Measurement parameter description of RSRP dataset
参数符号 | 参数名 | 取值 | 单位 |
---|---|---|---|
载波中心频率 | 2 585.0 | MHz | |
海拔 | [497.5,544.0] | m | |
建筑物高度 | [0,339] | m | |
信号发射塔高度 | [25.2,62.0] | m | |
发射天线垂直下倾角 | [ | Deg. | |
信号接收点实测RSRP | [-120.3,-51.0] | dBm |
方法 | RMSE/dBm | MAPE/dBm | 参数量 | ||
---|---|---|---|---|---|
训练集 | 测试集 | 训练集 | 测试集 | ||
Cost231-Hata | 17.88 | 17.64 | 8.52 | 8.47 | — |
SPM | 12.26 | 12.44 | 6.64 | 6.98 | — |
线性回归 | 9.43 | 9.35 | 1.19 | 1.37 | — |
KNN[ | 6.00 | 7.41 | 0.44 | 0.84 | — |
AdaBoost[ | 7.46 | 7.78 | 0.73 | 0.81 | — |
BPNN [ | 6.07 | 7.21 | 0.62 | 0.82 | — |
RFR[ | 4.97 | 6.58 | 0.39 | 0.75 | — |
EFsNet[ | 4.56 | 6.11 | 0.33 | 0.66 | 333 085 |
本文方法 | 3.35 | 5.42 | 0.28 | 0.43 | 65 453 |
Tab. 3 Comparison of same-cell RSRP estimation results
方法 | RMSE/dBm | MAPE/dBm | 参数量 | ||
---|---|---|---|---|---|
训练集 | 测试集 | 训练集 | 测试集 | ||
Cost231-Hata | 17.88 | 17.64 | 8.52 | 8.47 | — |
SPM | 12.26 | 12.44 | 6.64 | 6.98 | — |
线性回归 | 9.43 | 9.35 | 1.19 | 1.37 | — |
KNN[ | 6.00 | 7.41 | 0.44 | 0.84 | — |
AdaBoost[ | 7.46 | 7.78 | 0.73 | 0.81 | — |
BPNN [ | 6.07 | 7.21 | 0.62 | 0.82 | — |
RFR[ | 4.97 | 6.58 | 0.39 | 0.75 | — |
EFsNet[ | 4.56 | 6.11 | 0.33 | 0.66 | 333 085 |
本文方法 | 3.35 | 5.42 | 0.28 | 0.43 | 65 453 |
方法 | RMSE/dBm | MAPE/dBm | 耗时/s | ||
---|---|---|---|---|---|
训练集 | 测试集 | 训练集 | 测试集 | ||
线性回归 | 10.52 | 12.52 | 1.42 | 2.02 | 0.1 |
KNN[ | 6.62 | 11.96 | 1.04 | 1.28 | 11.2 |
AdaBoost[ | 7.88 | 10.56 | 1.11 | 1.37 | 10.8 |
BPNN [ | 6.39 | 10.69 | 0.92 | 1.21 | 28.4 |
RFR[ | 5.18 | 10.38 | 0.64 | 1.15 | 11.6 |
EFsNet[ | 5.15 | 9.32 | 0.61 | 0.99 | 29.3 |
UNet[ | 4.95 | 8.01 | 0.48 | 0.71 | 0.8 |
本文方法 | 3.52 | 6.77 | 0.34 | 0.68 | 0.6 |
Tab. 4 Comparison of cross-cell RSRP estimation results
方法 | RMSE/dBm | MAPE/dBm | 耗时/s | ||
---|---|---|---|---|---|
训练集 | 测试集 | 训练集 | 测试集 | ||
线性回归 | 10.52 | 12.52 | 1.42 | 2.02 | 0.1 |
KNN[ | 6.62 | 11.96 | 1.04 | 1.28 | 11.2 |
AdaBoost[ | 7.88 | 10.56 | 1.11 | 1.37 | 10.8 |
BPNN [ | 6.39 | 10.69 | 0.92 | 1.21 | 28.4 |
RFR[ | 5.18 | 10.38 | 0.64 | 1.15 | 11.6 |
EFsNet[ | 5.15 | 9.32 | 0.61 | 0.99 | 29.3 |
UNet[ | 4.95 | 8.01 | 0.48 | 0.71 | 0.8 |
本文方法 | 3.52 | 6.77 | 0.34 | 0.68 | 0.6 |
等级 | RSRP/dBm | 含义 |
---|---|---|
0 | 极好 | |
1 | 很好 | |
2 | 一般 | |
3 | 可接受 | |
4 | 差 |
Tab. 5 Signal strength level standard of China Mobile
等级 | RSRP/dBm | 含义 |
---|---|---|
0 | 极好 | |
1 | 很好 | |
2 | 一般 | |
3 | 可接受 | |
4 | 差 |
1 | 张平, 牛凯, 田辉,等. 6G移动通信技术展望[J]. 通信学报, 2019, 40(1): 141-148. 10.11959/j.issn.1000-436x.2019022 |
ZHANG P, NIU K, TIAN H, et al. Technology prospect of 6G mobile communications [J]. Journal on Communications, 2019, 40(1): 141-148. 10.11959/j.issn.1000-436x.2019022 | |
2 | 尤肖虎, 尹浩, 邬贺铨. 6G与广域物联网[J]. 物联网学报, 2020, 4(1): 1-11. 10.11959/j.issn.2096-3750.2020.00158 |
YOU X H, YIN H, WU H Q. On 6G and wide-area IoT [J]. Chinese Journal on Internet of Things, 2020, 4(1): 1-11. 10.11959/j.issn.2096-3750.2020.00158 | |
3 | HATA M. Empirical formula for propagation loss in land mobile radio services [J]. IEEE Transactions on Vehicular Technology, 1980, 29(3): 317-325. 10.1109/t-vt.1980.23859 |
4 | RANI M S, BEHARA S, SURESH K. Comparison of Standard Propagation Model (SPM) and Stanford University Interim (SUI) radio propagation models for Long Term Evolution (LTE) [J]. International Journal of Advanced and Innovative Research, 2012, 3: 221-228. 10.5121/ijngn.2011.3303 |
5 | OROZA C A, ZHANG Z, WATTEYNE T, et al. A machine-learning-based connectivity model for complex terrain large-scale low-power wireless deployments [J]. IEEE Transactions on Cognitive Communications and Networking, 2017, 3(4): 576-584. 10.1109/tccn.2017.2741468 |
6 | SCHAPIRE R E. Explaining AdaBoost [M]// Empirical Inference: Festschrift in Honor of Vladimir N. Vapnik. Cham: Springer, 2013: 37-52. 10.1007/978-3-642-41136-6_5 |
7 | KRAMER O. Dimensionality Reduction with Unsupervised Nearest Neighbors [M]. Cham: Springer, 2013: 13-23. 10.1007/978-3-642-38652-7_2 |
8 | AWAD M, KHANNA R. Efficient Learning Machines: Theories, Concepts, and Applications for Engineers and System Designers [M]. Berkeley: Apress Berkeley, 2015: 67-80. 10.1007/978-1-4302-5990-9_4 |
9 | GOEL E, ABHILASHA E, GOEL E, et al. Random forest: a review [J]. International Journal of Advanced Research in Computer Science and Software Engineering, 2017, 7(1): 251-257. 10.23956/ijarcsse/v7i1/01113 |
10 | JIN D, LIN S. Advances in Computer Science and Information Engineering [M]. Cham: Springer, 2012: 553-558. 10.1007/978-3-642-30223-7 |
11 | 李志潇, 张之江, 谢克斌,等. 基于SPM模型的机场环境5.1 GHz电波传播特性测量与建模[J]. 工业控制计算机, 2021, 34(12):112-114,117. |
LI Z X, ZHANG Z J, XIE K B, et al. Measurement and modeling of 5.1 GHz radio wave propagation characteristics in airport environment based on SPM model [J]. Industrial Control Computer, 2021, 34(12): 112-114,117. | |
12 | LEE J-Y, KANG M Y, KIM S-C. Path loss exponent prediction for outdoor millimeter wave channels through deep learning [C]// Proceedings of the 2019 IEEE Wireless Communications and Networking Conference. Piscataway: IEEE, 2019: 1-5. 10.1109/wcnc.2019.8885668 |
13 | WEN J, ZHANG Y, YANG G, et al. Path loss prediction based on machine learning methods for aircraft cabin environments [J]. IEEE Access, 2019, 7: 159251-159261. 10.1109/access.2019.2950634 |
14 | SOTIROUDIS S P, SARIGIANNIDIS P, GOUDOS S K, et al. Fusing diverse input modalities for path loss prediction: a deep learning approach [J]. IEEE Access, 2021, 9: 30441-30451. 10.1109/access.2021.3059589 |
15 | ZHENG Y, LIU Z, HUANG R, et al. Feature extraction in reference signal received power prediction based on convolution neural networks[J]. IEEE Communications Letters, 2021, 25(6): 1751-1755. 10.1109/lcomm.2021.3054862 |
16 | LEVIE R, YAPAR Ç, KUTYNIOK G, et al. RadioUNet: fast radio map estimation with convolutional neural networks [J]. IEEE Transactions on Wireless Communications, 2021, 20(6): 4001-4015. 10.1109/twc.2021.3054977 |
17 | LI K, LI C, YU B, et al. Model and transfer spatial-temporal knowledge for fine-grained radio map reconstruction[J]. IEEE Transactions on Cognitive Communications and Networking, 2022, 8(2): 828-841. 10.1109/tccn.2021.3133844 |
18 | TIAN Y, YUAN S, CHEN W, et al. Transformer based radio map prediction model for dense urban environments [C]// Proceedings of the 13th International Symposium on Antennas, Propagation and EM Theory. Piscataway: IEEE, 2022: 1-3. 10.1109/isape54070.2021.9753644 |
19 | 华中师范大学. 基于深度学习的小区级RSRP估计方法: CN113644996A[P]. 2021-11-15. 10.1109/ucet54125.2021.9674953 |
Central China Normal University. RSRP estimation method based on deep learning for urban areas: CN113644996A[P]. 2021-11-15. 10.1109/ucet54125.2021.9674953 | |
20 | ZHENG Y, ZHANG T, LIAO C, et al. RadioCycle: deep dual learning based radio map estimation [J]. KSII Transactions on Internet and Information Systems, 2022, 16(11): 3780-3797. 10.3837/tiis.2022.11.017 |
21 | TIAN C, XU Y, ZUO W, et al. Coarse-to-fine CNN for image super-resolution [J]. IEEE Transactions on Multimedia, 2020, 23: 1489-1502. 10.1109/tmm.2020.2999182 |
22 | REN D, SHANG W, ZHU P, et al. Single image deraining using bilateral recurrent network [J]. IEEE Transactions on Image Processing, 2020, 29: 6852-6863. 10.1109/tip.2020.2994443 |
23 | RONNEBERGER O, FISCHER P, BROX T. U-net: convolutional networks for biomedical image segmentation [C]// Proceedings of the 18th International Conference on Medical Image Computing and Computer-Assisted Intervention. Cham: Springer, 2015: 234-241. 10.1007/978-3-319-24574-4_28 |
24 | ISOLA P, ZHU J-Y, ZHOU T, et al. Image-to-image translation with conditional adversarial networks [C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 5967-5976. 10.1109/cvpr.2017.632 |
25 | MIRZA M, OSINDERO S. Conditional generative adversarial nets [EB/OL]. [2023-02-14]. . |
26 | GUO S, YAN Z, ZHANG K, et al. Toward convolutional blind denoising of real photographs [C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2019: 1712-1722. 10.1109/cvpr.2019.00181 |
27 | IOFFE S, SZEGEDY C. Batch normalization: accelerating deep network training by reducing internal covariate shift [C]// Proceedings of the 32nd International Conference on Machine Learning. New York: JMLR.org, 2015: 448-456. |
28 | KINGMA D P, BA J. Adam: a method for stochastic optimization [EB/OL]. [2022-12-08]. . |
[1] | Yuwei DING, Hongbo SHI, Jie LI, Min LIANG. Image denoising network based on local and global feature decoupling [J]. Journal of Computer Applications, 2024, 44(8): 2571-2579. |
[2] | Xuebin CHEN, Zhiqiang REN, Hongyang ZHANG. Review on security threats and defense measures in federated learning [J]. Journal of Computer Applications, 2024, 44(6): 1663-1672. |
[3] | Zihao YAO, Yuanming LI, Ziqiang MA, Yang LI, Lianggen WEI. Multi-object cache side-channel attack detection model based on machine learning [J]. Journal of Computer Applications, 2024, 44(6): 1862-1871. |
[4] | Wei SHE, Yang LI, Lihong ZHONG, Defeng KONG, Zhao TIAN. Hyperparameter optimization for neural network based on improved real coding genetic algorithm [J]. Journal of Computer Applications, 2024, 44(3): 671-676. |
[5] | Ruifeng HOU, Pengcheng ZHANG, Liyuan ZHANG, Zhiguo GUI, Yi LIU, Haowen ZHANG, Shubin WANG. Iterative denoising network based on total variation regular term expansion [J]. Journal of Computer Applications, 2024, 44(3): 916-921. |
[6] | Xuebin CHEN, Changsheng QU. Overview of backdoor attacks and defense in federated learning [J]. Journal of Computer Applications, 2024, 44(11): 3459-3469. |
[7] | Renke SUN, Zhiyu HUANGFU, Hu CHEN, Zhongnian LI, Xinzheng XU. Survey of neural architecture search [J]. Journal of Computer Applications, 2024, 44(10): 2983-2994. |
[8] | Wenze CHAI, Jing FAN, Shukui SUN, Yiming LIANG, Jingfeng LIU. Overview of deep metric learning [J]. Journal of Computer Applications, 2024, 44(10): 2995-3010. |
[9] | Chunyong YIN, Yongcheng ZHOU. Automatically adjusted clustered federated learning for double-ended clustering [J]. Journal of Computer Applications, 2024, 44(10): 3011-3020. |
[10] | Pengbo WANG, Wuyang SHAN, Jun LI, Mao TIAN, Deng ZOU, Zhanfeng FAN. Robust splicing forensic algorithm against high-intensity salt-and-pepper noise [J]. Journal of Computer Applications, 2024, 44(10): 3177-3184. |
[11] | Haoyang CUI, Hui ZHANG, Lei ZHOU, Chunming YANG, Bo LI, Xujian ZHAO. Multi-similarity K-nearest neighbor classification algorithm with ordered pairs of normalized real numbers [J]. Journal of Computer Applications, 2023, 43(9): 2673-2678. |
[12] | Jing ZHONG, Chen LIN, Zhiwei SHENG, Shibin ZHANG. Quantum K-Means algorithm based on Hamming distance [J]. Journal of Computer Applications, 2023, 43(8): 2493-2498. |
[13] | Mengjie LAN, Jianping CAI, Lan SUN. Self-regularization optimization methods for Non-IID data in federated learning [J]. Journal of Computer Applications, 2023, 43(7): 2073-2081. |
[14] | Anyang LIU, Huaici ZHAO, Wenlong CAI, Zechao XU, Ruideng XIE. Adaptive image deblurring generative adversarial network algorithm based on active discrimination mechanism [J]. Journal of Computer Applications, 2023, 43(7): 2288-2294. |
[15] | Xiaohui HUANG, Kaiming YANG, Jiahao LING. Order dispatching by multi-agent reinforcement learning based on shared attention [J]. Journal of Computer Applications, 2023, 43(5): 1620-1624. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||