Journal of Computer Applications ›› 2020, Vol. 40 ›› Issue (2): 375-380.DOI: 10.11772/j.issn.1001-9081.2019081400
• DPCS 2019 • Previous Articles Next Articles
Jie WANG, Rangding WANG(), Diqun YAN, Yuzhen LIN
Received:
2019-07-31
Revised:
2019-08-28
Accepted:
2019-09-19
Online:
2019-10-14
Published:
2020-02-10
Contact:
Rangding WANG
About author:
WANG Jie, born in 1996, M. S. candidate. His research interests include multimedia communication, information security.Supported by:
通讯作者:
王让定
作者简介:
王杰(1996—),男,浙江嘉兴人,硕士研究生,主要研究方向:多媒体通信、信息安全基金资助:
CLC Number:
Jie WANG, Rangding WANG, Diqun YAN, Yuzhen LIN. Detection method for echo hiding based on convolutional neural network framework[J]. Journal of Computer Applications, 2020, 40(2): 375-380.
王杰, 王让定, 严迪群, 林昱臻. 基于卷积神经网络框架的回声隐藏检测方法[J]. 《计算机应用》唯一官方网站, 2020, 40(2): 375-380.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.joca.cn/EN/10.11772/j.issn.1001-9081.2019081400
回声核 | 分段长度 | 回声幅度 | 延迟时长 |
---|---|---|---|
K1 | 128或256或512 (随机选取) | ||
K2 | |||
K3 |
Tab. 1 Parameter setting of echo kernels
回声核 | 分段长度 | 回声幅度 | 延迟时长 |
---|---|---|---|
K1 | 128或256或512 (随机选取) | ||
K2 | |||
K3 |
回声核 | 回声幅度 | 准确率/% | ||
---|---|---|---|---|
本文方法 | 文献[ | 文献[ | ||
K1 | 0.3 | 98.62 | 86.00 | 90.35 |
0.4 | 99.28 | 95.00 | 93.65 | |
0.5 | 99.45 | 98.00 | 94.12 | |
K2 | 0.1/0.3 | 98.53 | 85.00 | 89.43 |
0.2/0.4 | 99.47 | 94.00 | 96.63 | |
0.3/0.5 | 99.77 | 97.00 | 96.65 | |
K3 | 0.1 | 93.20 | 78.00 | 79.22 |
0.2 | 97.50 | 97.00 | 93.50 | |
0.3 | 98.72 | 100.00 | 97.83 |
Tab. 2 Accuracy comparison of three methods
回声核 | 回声幅度 | 准确率/% | ||
---|---|---|---|---|
本文方法 | 文献[ | 文献[ | ||
K1 | 0.3 | 98.62 | 86.00 | 90.35 |
0.4 | 99.28 | 95.00 | 93.65 | |
0.5 | 99.45 | 98.00 | 94.12 | |
K2 | 0.1/0.3 | 98.53 | 85.00 | 89.43 |
0.2/0.4 | 99.47 | 94.00 | 96.63 | |
0.3/0.5 | 99.77 | 97.00 | 96.65 | |
K3 | 0.1 | 93.20 | 78.00 | 79.22 |
0.2 | 97.50 | 97.00 | 93.50 | |
0.3 | 98.72 | 100.00 | 97.83 |
回声核 | 回声幅度 | 准确率/% | ||||
---|---|---|---|---|---|---|
本文 框架 | 网络 深度 | 激活 函数 | 权重 初始化 | 卷积核尺寸 | ||
K1 | 0.3 | 98.62 | 98.40 | 96.58 | 97.55 | 97.32 |
0.4 | 99.28 | 98.99 | 97.76 | 98.65 | 98.81 | |
0.5 | 99.45 | 99.35 | 98.32 | 99.07 | 99.23 | |
K2 | 0.1/0.3 | 98.53 | 98.08 | 98.41 | 97.23 | 97.98 |
0.2/0.4 | 99.47 | 99.00 | 99.23 | 98.46 | 99.10 | |
0.3/0.5 | 99.46 | 99.77 | 99.59 | 99.08 | 99.57 | |
K3 | 0.1 | 93.20 | 89.32 | 92.27 | 88.95 | 88.52 |
0.2 | 97.50 | 96.77 | 97.18 | 94.83 | 95.56 | |
0.3 | 98.72 | 97.46 | 97.98 | 96.57 | 98.31 |
Tab. 3 Accuracy comparison of different network structures
回声核 | 回声幅度 | 准确率/% | ||||
---|---|---|---|---|---|---|
本文 框架 | 网络 深度 | 激活 函数 | 权重 初始化 | 卷积核尺寸 | ||
K1 | 0.3 | 98.62 | 98.40 | 96.58 | 97.55 | 97.32 |
0.4 | 99.28 | 98.99 | 97.76 | 98.65 | 98.81 | |
0.5 | 99.45 | 99.35 | 98.32 | 99.07 | 99.23 | |
K2 | 0.1/0.3 | 98.53 | 98.08 | 98.41 | 97.23 | 97.98 |
0.2/0.4 | 99.47 | 99.00 | 99.23 | 98.46 | 99.10 | |
0.3/0.5 | 99.46 | 99.77 | 99.59 | 99.08 | 99.57 | |
K3 | 0.1 | 93.20 | 89.32 | 92.27 | 88.95 | 88.52 |
0.2 | 97.50 | 96.77 | 97.18 | 94.83 | 95.56 | |
0.3 | 98.72 | 97.46 | 97.98 | 96.57 | 98.31 |
测试 回声核 | 回声幅度 | 准确率/% | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
K1 | K2 | K3 | ||||||||
0.3 | 0.4 | 0.5 | 0.1/0.3 | 0.2/0.4 | 0.3/0.5 | 0.1 | 0.2 | 0.3 | ||
K1 | 0.3 | — | 96.22 | 94.92 | 73.08 | 63.08 | 58.58 | 93.63 | 85.75 | 77.63 |
0.4 | 99.20 | — | 98.97 | 76.08 | 66.55 | 61.89 | 94.82 | 89.05 | 84.20 | |
0.5 | 99.30 | 99.30 | — | 76.75 | 68.45 | 63.67 | 95.13 | 89.90 | 87.13 | |
K2 | 0.1/0.3 | 87.73 | 79.00 | 69.68 | — | 97.20 | 92.57 | 94.23 | 90.63 | 80.82 |
0.2/0.4 | 88.22 | 79.43 | 71.50 | 99.48 | — | 98.95 | 94.35 | 91.85 | 84.95 | |
0.3/0.5 | 89.43 | 81.58 | 73.78 | 99.60 | 99.73 | — | 94.82 | 92.93 | 87.80 | |
K3 | 0.1 | 72.95 | 63.90 | 55.77 | 64.70 | 56.88 | 53.73 | — | 77.35 | 62.42 |
0.2 | 94.72 | 88.55 | 81.47 | 86.25 | 73.43 | 74.73 | 97.25 | — | 94.62 | |
0.3 | 97.95 | 96.10 | 95.02 | 95.28 | 86.70 | 76.37 | 97.72 | 99.40 | — |
Tab. 4 Accuracy comparison of cross-over testing
测试 回声核 | 回声幅度 | 准确率/% | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
K1 | K2 | K3 | ||||||||
0.3 | 0.4 | 0.5 | 0.1/0.3 | 0.2/0.4 | 0.3/0.5 | 0.1 | 0.2 | 0.3 | ||
K1 | 0.3 | — | 96.22 | 94.92 | 73.08 | 63.08 | 58.58 | 93.63 | 85.75 | 77.63 |
0.4 | 99.20 | — | 98.97 | 76.08 | 66.55 | 61.89 | 94.82 | 89.05 | 84.20 | |
0.5 | 99.30 | 99.30 | — | 76.75 | 68.45 | 63.67 | 95.13 | 89.90 | 87.13 | |
K2 | 0.1/0.3 | 87.73 | 79.00 | 69.68 | — | 97.20 | 92.57 | 94.23 | 90.63 | 80.82 |
0.2/0.4 | 88.22 | 79.43 | 71.50 | 99.48 | — | 98.95 | 94.35 | 91.85 | 84.95 | |
0.3/0.5 | 89.43 | 81.58 | 73.78 | 99.60 | 99.73 | — | 94.82 | 92.93 | 87.80 | |
K3 | 0.1 | 72.95 | 63.90 | 55.77 | 64.70 | 56.88 | 53.73 | — | 77.35 | 62.42 |
0.2 | 94.72 | 88.55 | 81.47 | 86.25 | 73.43 | 74.73 | 97.25 | — | 94.62 | |
0.3 | 97.95 | 96.10 | 95.02 | 95.28 | 86.70 | 76.37 | 97.72 | 99.40 | — |
1 | BENDER W, GRUHL D, MORIMOTO N, et al. Techniques for data hiding[J]. IBM Systems Journal, 1996, 35(3/4): 313-336. 10.1147/sj.353.0313 |
2 | OH H O, SEOK J W, HONG J W, et al. New echo embedding technique for robust and imperceptible audio watermarking[C]// Proceedings of the 2001 IEEE International Conference on Acoustics, Speech, and Signal Processing. Piscataway: IEEE, 2001:1341-1344. 10.1109/icassp.2001.941176 |
3 | KIM H J, CHOI Y H. A novel echo-hiding scheme with backward and forward kernels[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2003, 13(8): 885-889. 10.1109/tcsvt.2003.815950 |
4 | ZENG W, AI H, HU R, et al. An algorithm of echo steganalysis based on Bayes classifier[C]// Proceedings of the 2008 International Conference on Information and Automation. Piscataway: IEEE, 2008: 1667-1670. 10.1109/icinfa.2008.4608272 |
5 | 杨榆,雷敏,钮心忻,等. 基于回声隐藏的VDSC隐写分析算法[J]. 通信学报, 2009, 30(2):83-88. 10.3321/j.issn:1000-436X.2009.02.014 |
YANG Y, LEI M, NIU X X, et al. VDSC steganalysis algorithm based on echo hiding[J]. Journal on Communications, 2009, 30(2): 83-88. 10.3321/j.issn:1000-436X.2009.02.014 | |
6 | XIE C, CHENG Y, WU F. A new detection scheme for echo hiding[C]// Proceedings of the 2010 IEEE International Conference on Information Theory and Information Security. Piscataway: IEEE, 2010: 242-246. 10.1109/icitis.2010.5688776 |
7 | 王昱洁,郭立,王翠平. 基于功率倒谱统计特征的音频回声隐写分析方法[J]. 中国科学技术大学学报, 2010, 40(10):1074-1081. 10.3969/j.issn.0253-2778.2010.10.012 |
WANG Y J, GUO L, WANG C P. An audio steganalysis method for echo hiding based on statistical features of power cepstrums[J]. Journal of University of Science and Technology of China, 2010, 40(10):1074-1081. 10.3969/j.issn.0253-2778.2010.10.012 | |
8 | CHEN B, LUO W, LUO D. Identification of audio processing operations based on convolutional neural network[C]// Proceedings of the 6th ACM Workshop on Information Hiding and Multimedia Security. New York: ACM, 2018: 73-77. 10.1145/3206004.3206005 |
9 | CHEN B, LUO W, LI H. Audio steganalysis with convolutional neural network[C]// Proceedings of the 5th ACM Workshop on Information Hiding and Multimedia Security. New York: ACM, 2017: 85-90. 10.1145/3082031.3083234 |
10 | LIN M, CHEN Q, YAN S. Network in network[EB/OL]. [2018-03-04]. . 10.1109/icicta.2014.118 |
11 | WANG Y, YANG K, YI X, et al. CNN-based steganalysis of MP3 steganography in the entropy code domain[C]// Proceedings of the 6th ACM Workshop on Information Hiding and Multimedia Security. New York: ACM, 2018: 55-65. 10.1145/3206004.3206011 |
12 | SEICHTER D, CUCCOVILLO L, AICHROTH P. AAC encoding detection and bitrate estimation using a convolutional neural network[C]// Proceedings of the 2016 IEEE International Conference on Acoustics, Speech and Signal Processing. Piscataway: IEEE, 2016: 2069-2073. 10.1109/icassp.2016.7472041 |
13 | LUO D, YANG R, LI B, et al. Detection of double compressed AMR audio using stacked autoencoder[J]. IEEE Transactions on Information Forensics and Security, 2017, 12(2): 432-444. 10.1109/tifs.2016.2622012 |
14 | IOFFE S, SZEGEDY C. Batch normalization: accelerating deep network training by reducing internal covariate shift[EB/OL]. [2018-03-02]. . |
15 | SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[EB/OL]. [2018-04-10]. . 10.5244/c.28.6 |
16 | GAROFOLO J S, LAMEL L F, FISHER W M, et al. DARPA TIMIT: acoustic-phonetic continuous speech corpus[R]. Gaithersburg, MD: National Institute of Standards and Technology, 1993. 10.6028/nist.ir.4930 |
[1] | WANG Hebing, ZHANG Chunmei. Facial landmark detection based on ResNeXt with asymmetric convolution and squeeze excitation [J]. Journal of Computer Applications, 2021, 41(9): 2741-2747. |
[2] | ZHENG Zhiqiang, HU Xin, WENG Zhi, WANG Yuhe, CHENG Xi. Cattle eye image feature extraction method based on improved DenseNet [J]. Journal of Computer Applications, 2021, 41(9): 2780-2784. |
[3] | CHEN Chengrui, SUN Ning, HE Shibiao, LIAO Yong. Deep learning-based joint channel estimation and equalization algorithm for C-V2X communications [J]. Journal of Computer Applications, 2021, 41(9): 2687-2693. |
[4] | XIE Defeng, JI Jianmin. Syntax-enhanced semantic parsing with syntax-aware representation [J]. Journal of Computer Applications, 2021, 41(9): 2489-2495. |
[5] | DAI Yurou, YANG Qing, ZHANG Fengli, ZHOU Fan. Trajectory prediction model of social network users based on self-supervised learning [J]. Journal of Computer Applications, 2021, 41(9): 2545-2551. |
[6] | SONG Zhongshan, LIANG Jiarui, ZHENG Lu, LIU Zhenyu, TIE Jun. Remote sensing scene classification based on bidirectional gated scale feature fusion [J]. Journal of Computer Applications, 2021, 41(9): 2726-2735. |
[7] | LI Kangkang, ZHANG Jing. Multi-layer encoding and decoding model for image captioning based on attention mechanism [J]. Journal of Computer Applications, 2021, 41(9): 2504-2509. |
[8] | ZHANG Yongbin, CHANG Wenxin, SUN Lianshan, ZHANG Hang. Detection method of domains generated by dictionary-based domain generation algorithm [J]. Journal of Computer Applications, 2021, 41(9): 2609-2614. |
[9] | ZHAO Hong, KONG Dongyi. Chinese description of image content based on fusion of image feature attention and adaptive attention [J]. Journal of Computer Applications, 2021, 41(9): 2496-2503. |
[10] | XU Jianglang, LI Linyan, WAN Xinjun, HU Fuyuan. Indoor scene recognition method combined with object detection [J]. Journal of Computer Applications, 2021, 41(9): 2720-2725. |
[11] | ZENG Xiangyin, ZHENG Bochuan, LIU Dan. Detection of left and right railway tracks based on deep convolutional neural network and clustering [J]. Journal of Computer Applications, 2021, 41(8): 2324-2329. |
[12] | HE Zhenghai, XIAN Yantuan, WANG Meng, YU Zhengtao. Case reading comprehension method combining syntactic guidance and character attention mechanism [J]. Journal of Computer Applications, 2021, 41(8): 2427-2431. |
[13] | CAO Yuhong, XU Hai, LIU Sun'ao, WANG Zixiao, LI Hongliang. Review of deep learning-based medical image segmentation [J]. Journal of Computer Applications, 2021, 41(8): 2273-2287. |
[14] | QIN Binbin, PENG Liangkang, LU Xiangming, QIAN Jiangbo. Research progress on driver distracted driving detection [J]. Journal of Computer Applications, 2021, 41(8): 2330-2337. |
[15] | HUANG Chengcheng, DONG Xiaoxiao, LI Zhao. Deep pipeline 5×5 convolution method based on two-dimensional Winograd algorithm [J]. Journal of Computer Applications, 2021, 41(8): 2258-2264. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||