Journal of Computer Applications ›› 2024, Vol. 44 ›› Issue (12): 3941-3948.DOI: 10.11772/j.issn.1001-9081.2023121758
• Frontier and comprehensive applications • Previous Articles Next Articles
Jianli DING, Hui HUANG(), Weidong CAO
Received:
2023-12-19
Revised:
2024-02-03
Accepted:
2024-02-23
Online:
2024-03-11
Published:
2024-12-10
Contact:
Hui HUANG
About author:
DING Jianli, born in 1963, Ph. D., professor. His research interests include air transportation big data, artificial intelligence, intelligent biomimetic algorithm.Supported by:
通讯作者:
黄辉
作者简介:
丁建立(1963—),男,河南洛阳人,教授,博士,主要研究方向:航空运输大数据、人工智能、智能仿生算法基金资助:
CLC Number:
Jianli DING, Hui HUANG, Weidong CAO. Dynamic monitoring method of flight chain operation status[J]. Journal of Computer Applications, 2024, 44(12): 3941-3948.
丁建立, 黄辉, 曹卫东. 航班链运行状态动态监控方法[J]. 《计算机应用》唯一官方网站, 2024, 44(12): 3941-3948.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2023121758
特征 | 特征含义 | 缺失率/% | 处理方式 |
---|---|---|---|
company | 航空公司 | 0.06 | 标志位填充 |
pta | 计划到达时间 | 0.67 | 直接删除 |
delayreason | 延误原因 | 93.13 | 直接删除 |
windspeed | 风速 | 9.36 | 0填充 |
flightlong | 飞行距离 | 15.71 | 均值填充 |
cloud | 云层状态 | 23.72 | 上一时刻值填充 |
longitude | 经度 | 3.30 | 前后两处观测点取均值 |
Tab. 1 Missing rates and handling methods of some features
特征 | 特征含义 | 缺失率/% | 处理方式 |
---|---|---|---|
company | 航空公司 | 0.06 | 标志位填充 |
pta | 计划到达时间 | 0.67 | 直接删除 |
delayreason | 延误原因 | 93.13 | 直接删除 |
windspeed | 风速 | 9.36 | 0填充 |
flightlong | 飞行距离 | 15.71 | 均值填充 |
cloud | 云层状态 | 23.72 | 上一时刻值填充 |
longitude | 经度 | 3.30 | 前后两处观测点取均值 |
航班链元素 | 特征来源 | 特征维度 | 包含特征 |
---|---|---|---|
航班元素 | 航班计划数据 | 32 | 航班号、飞机尾号、计划起飞时间、到达机场…… |
气象数据 | 12 | 时间戳、机场、温度、风速…… | |
机场元素 | 机场状态数据 | 9 | 机场经度、机场海拔、机场等级、繁忙程度…… |
气象数据 | 12 | 云层状态、湿度、风向、能见度…… | |
当前运行航班元素 | 航班运行数据 | 12 | 维度、速度、方向角、高度…… |
Tab.2 Data characteristics of flight chain
航班链元素 | 特征来源 | 特征维度 | 包含特征 |
---|---|---|---|
航班元素 | 航班计划数据 | 32 | 航班号、飞机尾号、计划起飞时间、到达机场…… |
气象数据 | 12 | 时间戳、机场、温度、风速…… | |
机场元素 | 机场状态数据 | 9 | 机场经度、机场海拔、机场等级、繁忙程度…… |
气象数据 | 12 | 云层状态、湿度、风向、能见度…… | |
当前运行航班元素 | 航班运行数据 | 12 | 维度、速度、方向角、高度…… |
航班链运行状态类别 | |
---|---|
良好 | |
轻度延误 | |
中度延误 | |
重度延误 |
Tab.3 Classes of flight chain operation status
航班链运行状态类别 | |
---|---|
良好 | |
轻度延误 | |
中度延误 | |
重度延误 |
航班链运行状态变化趋势 | |||
---|---|---|---|
状态正常 | |||
发生延误 | |||
延误加重 | |||
延误持续 | |||
延误减轻 | |||
恢复正常 |
Tab.4 Trends of change in flight chain operation status
航班链运行状态变化趋势 | |||
---|---|---|---|
状态正常 | |||
发生延误 | |||
延误加重 | |||
延误持续 | |||
延误减轻 | |||
恢复正常 |
批次大小 | 平均耗时/ms | 准确率 |
---|---|---|
100 | 76.00 | 0.892 0 |
200 | 58.66 | 0.920 7 |
300 | 92.94 | 0.913 4 |
400 | 81.06 | 0.905 0 |
500 | 102.10 | 0.876 0 |
Tab.5 Model operation effect
批次大小 | 平均耗时/ms | 准确率 |
---|---|---|
100 | 76.00 | 0.892 0 |
200 | 58.66 | 0.920 7 |
300 | 92.94 | 0.913 4 |
400 | 81.06 | 0.905 0 |
500 | 102.10 | 0.876 0 |
实验设置 | 准确率 | 精确率 | 召回率 | F1分数 |
---|---|---|---|---|
使用误差补偿模块 | 0.920 7 | 0.919 6 | 0.915 6 | 0.917 6 |
未使用误差补偿模块 | 0.853 0 | 0.834 8 | 0.840 1 | 0.837 4 |
Tab.6 Experimental results of comparison
实验设置 | 准确率 | 精确率 | 召回率 | F1分数 |
---|---|---|---|---|
使用误差补偿模块 | 0.920 7 | 0.919 6 | 0.915 6 | 0.917 6 |
未使用误差补偿模块 | 0.853 0 | 0.834 8 | 0.840 1 | 0.837 4 |
1 | 中国民航大学. 一种航班链延误动态预测模型构建方法和预测方法: 202311260481.5[P]. 2023-12-19. |
Civil Aviation University of China. Model construction and prediction methods of dynamic prediction for flight chain delays: 202311260481.5[P]. 2023-12-19. | |
2 | ZHANG M, CHEN S, SUN L, et al. Characterizing flight delay profiles with a tensor factorization framework[J]. Engineering, 2021, 7(4): 465-472. |
3 | 王春政,胡明华,杨磊,等. 基于Agent模型的机场网络延误预测[J]. 航空学报, 2021, 42(7):452-465. |
WANG C Z, HU M H, YANG L, et al. Airport network delay prediction based on Agent model [J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(7):452-465. | |
4 | KIM M, PARK S. Airport and route classification by modelling flight delay propagation [J]. Journal of Air Transport Management, 2021, 93: No.102045. |
5 | CAI Q, ALAM S, DUONG V N. A spatial-temporal network perspective for the propagation dynamics of air traffic delays[J]. Engineering, 2021, 7(4):452-464. |
6 | BASPINAR B, KOYUNCU E. A data-driven air transportation delay propagation model using epidemic process models[J]. International Journal of Aerospace Engineering, 2016, 2016: No.4836260. |
7 | 唐红,王栋,宋博,等. 基于非线性赋权XGBoost算法的航班延误分类预测[J]. 系统仿真学报, 2021, 33(9):2261-2269. |
TANG H, WANG D, SONG B, et al. Classification of flight delay based on nonlinear weighted XGBoost [J]. Journal of System Simulation, 2021, 33(9):2261-2269. | |
8 | 吴仁彪,赵娅倩,屈景怡,等. 基于CBAM-CondenseNet的航班延误波及预测模型[J]. 电子与信息学报, 2021, 43(1):187-195. |
WU R B, ZHAO Y Q, QU J Y, et al. Flight delay propagation prediction model based on CBAM-CondenseNet[J]. Journal of Electronics and Information Technology, 2021, 43(1):187-195. | |
9 | 屈景怡,叶萌,渠星. 基于区域残差和LSTM网络的机场延误预测模型[J]. 通信学报, 2019, 40(4):149-159. |
QU J Y, YE M, QU X. Airport delay prediction model based on regional residual and LSTM network [J]. Journal on Communications, 2019, 40(4):149-159. | |
10 | CAI K, LI Y, ZHU Y, et al. A geographical and operational deep graph convolutional approach for flight delay prediction[J]. Chinese Journal of Aeronautics, 2023, 36(3):357-367. |
11 | 姜雨,陈名扬,袁琪,等. 基于时空图卷积神经网络的离港航班延误预测[J]. 北京航空航天大学学报, 2023, 49(5):1044-1052. |
JIANG Y, CHEN M Y, YUAN Q, et al. Departure flight delay prediction based on spatio-temporal graph convolutional networks[J]. Journal of Beijing University of Aeronautics and Astronautics, 2023, 49(5):1044-1052. | |
12 | SHAO W, PRABOWO A, ZHAO S, et al. Predicting flight delay with spatio-temporal trajectory convolutional network and airport situational awareness map[J]. Neurocomputing, 2022, 472:280-293. |
13 | 屈景怡,杨柳,陈旭阳,等. 基于时空序列的Conv-LSTM航班延误预测模型[J]. 计算机应用, 2022, 42(10):3275-3282. |
QU J Y, YANG L, CHEN X Y, et al. Flight delay prediction model based on Conv-LSTM with spatiotemporal sequence [J]. Journal of Computer Applications, 2022, 42(10): 3275-3282. | |
14 | 吴仁彪,李佳怡,屈景怡. 基于双通道卷积神经网络的航班延误预测模型[J]. 计算机应用, 2018, 38(7):2100-2106, 2112. |
WU R B, LI J Y, QU J Y. Flight delay prediction model based on dual-channel convolutional neural network[J]. Journal of Computer Applications, 2018, 38(7): 2100-2106. | |
15 | 臧海培,朱金福,高强. 机场实时容量提取和深度融合时空分布预测建模[J]. 重庆交通大学学报(自然科学版), 2023, 42(7):136-145. |
ZANG H P, WU J F, GAO Q. Airport real-time capacity extraction and deep ensemble spatiotemporal distribution prediction modeling [J]. Journal of Chongqing Jiaotong University (Natural Science), 2023, 42(7):136-145. | |
16 | 许保光,刘倩倩,高敏刚. 基于机场繁忙程度的航班延误波及分析[J]. 中国管理科学, 2019, 27(8):87-95. |
XU B G, LIU Q Q, GAO M G. The flight delay propagation analysis based on airport busy state [J]. Chinese Journal of Management Science, 2019, 27(8):87-95. | |
17 | 吴薇薇,熊奥萍,唐红武. 基于UKDE和XGBoost的航班过站时间动态预测[J]. 南京航空航天大学学报, 2023, 55(6):1016-1024. |
WU W W, XIONG A P, TANG H W. Dynamic prediction of flight transit time based on UKDE and XGBoost [J]. Journal of Nanjing University of Aeronautics and Astronautics, 2023, 55(6):1016-1024. | |
18 | 姜雨,袁琪,胡志韬,等. 基于气象因素的机场进离港延误预测[J]. 系统工程与电子技术, 2023, 45(6):1722-1731. |
JIANG Y, YUAN Q, HU Z T, et al. Airport arrival and departure delay time prediction based on meteorological factors[J]. Systems Engineering and Electronics, 2023, 45(6):1722-1731. |
[1] | Xue LI, Guangle YAO, Honghui WANG, Jun LI, Haoran ZHOU, Shaoze YE. Remote sensing image classification based on sample incremental learning [J]. Journal of Computer Applications, 2024, 44(3): 732-736. |
[2] | Feiyu YANG, Zhan SONG, Zhenzhong XIAO, Yaoyang MO, Yu CHEN, Zhe PAN, Min ZHANG, Yao ZHANG, Beibei QIAN, Chaowei TANG, Wu JIN. Rethinking errors in human pose estimation heatmap [J]. Journal of Computer Applications, 2022, 42(8): 2548-2555. |
[3] | Le WANG, Meng HAN, Xiaojuan LI, Ni ZHANG, Haodong CHENG. Ensemble classification algorithm based on dynamic weighting function [J]. Journal of Computer Applications, 2022, 42(4): 1137-1147. |
[4] | Jing LIU, Zhihong DONG, Zheyu ZHANG, Zhigang SUN, Haipeng JI. Data sharing method of industrial internet of things based on federal incremental learning [J]. Journal of Computer Applications, 2022, 42(4): 1235-1243. |
[5] | Chao LIU, Lei WANG, Wen YANG, Qiangqiang ZHONG, Min LI. Incremental attribute reduction method for set-valued decision information system with variable attribute sets [J]. Journal of Computer Applications, 2022, 42(2): 463-468. |
[6] | Haiwen XU, Jiacai SHI, Teng WANG. Departure flight delay prediction model based on deep fully connected neural network [J]. Journal of Computer Applications, 2022, 42(10): 3283-3291. |
[7] | Jingyi QU, Liu YANG, Xuyang CHEN, Qian WANG. Flight delay prediction model based on Conv-LSTM with spatiotemporal sequence [J]. Journal of Computer Applications, 2022, 42(10): 3275-3282. |
[8] | LUO Changyin, CHEN Xuebin, MA Chundi, WANG Junyu. Online federated incremental learning algorithm for blockchain [J]. Journal of Computer Applications, 2021, 41(2): 363-371. |
[9] | DENG Wenhan, ZHANG Ming, WANG Lijin, ZHONG Yiwen. Hybrid population-based incremental learning algorithm for solving closed-loop layout problem [J]. Journal of Computer Applications, 2021, 41(1): 95-102. |
[10] | LIU Dan, YAO Lishuang, WANG Yunfeng, PEI Zuofei. Classification model for class imbalanced traffic data [J]. Journal of Computer Applications, 2020, 40(8): 2327-2333. |
[11] | QU Jingyi, CAO Lei, CHEN Min, DONG Liang, CAO Yexiu. CliqueNet flight delay prediction model based on clique random connection [J]. Journal of Computer Applications, 2020, 40(8): 2420-2427. |
[12] | Keyun LUO, Baoliu YE, Bin TANG, Feng MEI, Wenda LU. Incremental learning based proactive caching mechanism for RocksDB key-value system [J]. Journal of Computer Applications, 2020, 40(2): 321-327. |
[13] | Cui LI, Qingkui CHEN. Dynamic monitoring model based on DPDK parallel communication [J]. Journal of Computer Applications, 2020, 40(2): 335-341. |
[14] | YANG Liangdong, YANG Zhixia. Incremental robust non-negative matrix factorization with sparseness constraints and its application [J]. Journal of Computer Applications, 2019, 39(5): 1275-1281. |
[15] | SHI Baozhu, LI Mei'an. Automatic stitching and restoration algorithm for paper fragments based on angle and edge features [J]. Journal of Computer Applications, 2019, 39(2): 571-576. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||