1 |
CHEN X, KUNDU K, ZHANG Z, et al. Monocular 3D object detection for autonomous driving[C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 2147-2156. 10.1109/cvpr.2016.236
|
2 |
ZHENG Y, LIU Y, HANSEN J H L. Navigation-orientated natural spoken language understanding for intelligent vehicle dialogue[C]// Proceedings of the 2017 IEEE Intelligent Vehicles Symposium. Piscataway: IEEE, 2017: 559-564. 10.1109/ivs.2017.7995777
|
3 |
KANG L, YE P, LI Y, et al. Convolutional neural networks for no-reference image quality assessment[C]// Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2014:1733-1740. 10.1109/cvpr.2014.224
|
4 |
TEERAPITTAYANON S, MCDANEL B, KUNG H T. Distributed deep neural networks over the cloud, the edge and end devices[C]// Proceedings of the IEEE 37th International Conference on Distributed Computing Systems. Piscataway: IEEE, 2017: 328-339. 10.1109/icdcs.2017.226
|
5 |
ARMBRUST M, FOX A, GRIFFITH R, et al. Above the clouds: a Berkeley view of cloud computing, UCB/EECS-2009-28[R]. Berkeley: Electrical Engineering and Computer Sciences University of California, 2009.
|
6 |
HOWARD A G, ZHU M, CHEN B, et al. MobileNets: efficient convolutional neural networks for mobile vision applications[EB/OL]. [2019-04-22]. .
|
7 |
SYAMKUMAR M, BARFORD P, DURAIRAJAN R. Deployment characteristics of "the edge" in mobile edge computing[C]// Proceedings of the 2018 Workshop on Mobile Edge Communications. New York: ACM, 2018:43-49. 10.1145/3229556.3229557
|
8 |
LI M, ANDERSEN D G, PARK J W, et al. Scaling distributed machine learning with the parameter server[C]// Proceedings of the 11th USENIX Conference on Operating Systems Design and Implementation. Berkeley: USENIX Association, 2014:583-598. 10.1145/2640087.2644155
|
9 |
IANDOLA F N, MOSKEWICZ M W, ASHRAF K, et al. FireCaffe: near-linear acceleration of deep neural network training on compute clusters[C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016:2592-2600. 10.1109/cvpr.2016.284
|
10 |
TEERAPITTAYANON S, MCDANEL B, KUNG H T. BranchyNet: Fast inference via early exiting from deep neural networks[C]// Proceedings of the 23rd International Conference on Pattern Recognition. Piscataway: IEEE, 2016:2464-2469. 10.1109/icpr.2016.7900006
|
11 |
MAO J, CHEN X, NIXON K W, et al. MoDNN: local distributed mobile computing system for deep neural network[C]// Proceedings of the 2017 Design, Automation and Test in Europe Conference and Exhibition. Piscataway: IEEE, 2017: 1396-1401. 10.23919/date.2017.7927211
|
12 |
LI E, ZHOU Z, CHEN X. Edge intelligence: on-demand deep learning model co-inference with device-edge synergy[C]// Proceedings of the 2018 Workshop on Mobile Edge Communications. New York: ACM, 2018: 31-36. 10.1145/3229556.3229562
|
13 |
KANG Y, HAUSWALD J, GAO C, et al. Neurosurgeon: collaborative intelligence between the cloud and mobile edge[J]. ACM SIGPLAN Notices, 2017, 52(4):615-629. 10.1145/3093336.3037698
|
14 |
LI H, OTA K, DONG M. Learning IoT in edge: deep learning for the Internet of things with edge computing[J]. IEEE Network, 2018, 32(1):96-101. 10.1109/mnet.2018.1700202
|
15 |
HAN S, MAO H, DALLY W J. Deep compression: compressing deep neural networks with pruning, trained quantization and Huffman coding[C]// Proceedings of the 2016 International Conference on Learning Representations. [S.l.]: ICLR, 2016: 351-360.
|
16 |
蔡瑞初,钟椿荣,余洋,等.面向“边缘”应用的卷积神经网络量化与压缩方法[J].计算机应用,2018,38(9):2449-2454.
|
|
CAI R C, ZHONG C R, YU Y, et al. CNN quantization and compression strategy for edge computing applications[J]. Journal of Computer Applications, 2018, 38(9):2449-2454.
|
17 |
赵梓铭,刘芳,蔡志平,等.边缘计算:平台、应用与挑战[J].计算机研究与发展,2018,55(2):327-337. 10.7544/issn1000-1239.2018.20170228
|
|
ZHAO Z M, LIU F, CAI Z P, et al. Edge computing: platforms, applications and challenges [J]. Journal of Computer Research and Development, 2018, 55(2):327-337. 10.7544/issn1000-1239.2018.20170228
|
18 |
SAHNI S, GONZALES T. P-complete approximation problem[J]. Journal of the ACM, 1976, 23(3):555-565. 10.1145/321958.321975
|
19 |
符永铨,李东升.边缘计算环境下应用驱动的网络延迟测量与优化技术[J].计算机研究与发展,2018,55(3):512-523. 10.1109/access.2018.2834623
|
|
FU Y Q, LI D S. Application driven network latency measurement analysis and optimization techniques edge computing environment: a survey[J]. Journal of Computer Research and Development, 2018, 55(3):512-523. 10.1109/access.2018.2834623
|
20 |
QI H, SPARKS E R, TALWALKAR A. Paleo: a performance model for deep neural networks[C/OL]// Proceedings of the 5th International Conference on Learning Representations. [S.l.]: ICRL, 2017 [2019-04-06]. ?id=SyVVJ85lg.
|