1 |
SUN W, ZHANG H, WANG R, et al. Reducing offloading latency for digital twin edge networks in 6G[J]. IEEE Transactions on Vehicular Technology, 2020, 69(10): 12240-12251. 10.1109/tvt.2020.3018817
|
2 |
CHEN C, WANG C, QIU T, et al. Caching in vehicular named data networking: architecture, schemes and future directions[J]. IEEE Communications Surveys & Tutorials, 2020, 22(4): 2378-2407. 10.1109/comst.2020.3005361
|
3 |
LIU Y, LI Y, NIU Y, et al. Joint optimization of path planning and resource allocation in mobile edge computing[J]. IEEE Transactions on Mobile Computing, 2019, 19(9): 2129-2144. 10.1109/tmc.2019.2922316
|
4 |
BUTE M S, FAN P, LIU G, et al. A cluster-based cooperative computation offloading scheme for C-V2X networks[J]. Ad Hoc Networks, 2022, 132: 102862. 10.1016/j.adhoc.2022.102862
|
5 |
LIU G, DAI F, HUANG B, et al. A collaborative computation and dependency-aware task offloading method for vehicular edge computing: a reinforcement learning approach[J]. Journal of Cloud Computing, 2022, 11(1): No.68. 10.1186/s13677-022-00340-3
|
6 |
SUN J, GU Q, ZHENG T, et al. Joint communication and computing resource allocation in vehicular edge computing[J/OL]. International Journal of Distributed Sensor Networks, 2019, 15(3)[2023-05-01]. .
|
7 |
NING Z, DONG P, WANG X, et al. Deep reinforcement learning for vehicular edge computing: an intelligent offloading system[J]. ACM Transactions on Intelligent Systems and Technology, 2019, 10(6): No. 60. 10.1145/3317572
|
8 |
SHIN A, LIM Y. Federated-learning-based energy-efficient load balancing for UAV-enabled MEC system in vehicular networks[J]. Energies, 2023, 16(5): 2486. 10.3390/en16052486
|
9 |
YE X, LI M, SI P, et al. Collaborative and intelligent resource optimization for computing and caching in IoV with blockchain and MEC using A3C approach[J]. IEEE Transactions on Vehicular Technology, 2023, 72(2): 1449-1463. 10.1109/tvt.2022.3210570
|
10 |
LU H, HE X, DU M, et al. Edge QoE: computation offloading with deep reinforcement learning for Internet of Things[J]. IEEE Internet of Things Journal, 2020, 7(10): 9255-9265. 10.1109/jiot.2020.2981557
|
11 |
WU Y, XIA J, GAO C, et al. Task offloading for vehicular edge computing with imperfect CSI: a deep reinforcement approach[J]. Physical Communication, 2022, 55: 101867. 10.1016/j.phycom.2022.101867
|
12 |
RAZA S, LIU W, AHMED M, et al. An efficient task offloading scheme in vehicular edge computing[J]. Journal of Cloud Computing, 2020, 9(1): No. 28. 10.1186/s13677-020-00175-w
|
13 |
ZHANG H, WANG Z, LIU K. V2X offloading and resource allocation in SDN-assisted MEC-based vehicular networks[J]. China Communications, 2020, 17(5): 266-283. 10.23919/jcc.2020.05.020
|
14 |
GU X, ZHANG G, CAO Y. Cooperative mobile edge computing‐cloud computing in Internet of vehicle: architecture and energy‐efficient workload allocation[J]. Transactions on Emerging Telecommunications Technologies, 2021, 32(8): e4095. 10.1002/ett.4095
|
15 |
CHO H, CUI Y, LEE J. Energy-efficient cooperative offloading for edge computing-enabled vehicular networks[J]. IEEE Transactions on Wireless Communications, 2022, 21(12): 10709-10723. 10.1109/twc.2022.3186590
|
16 |
HUANG Y, CAO Y, ZHANG M, et al. CSO-DRL: a collaborative service offloading approach with deep reinforcement learning in vehicular edge computing[J]. Scientific Programming, 2022, 2022: 1163177. 10.1155/2022/1163177
|
17 |
ZHANG K, MAO Y, LENG S, et al. Contract-theoretic approach for delay constrained offloading in vehicular edge computing networks[J]. Mobile Networks and Applications, 2019, 24(3): 1003-1014. 10.1007/s11036-018-1032-0
|
18 |
SUN Y, GUO X, SONG J, et al. Adaptive learning-based task offloading for vehicular edge computing systems[J]. IEEE Transactions on Vehicular Technology, 2019, 68(4): 3061-3074. 10.1109/tvt.2019.2895593
|
19 |
ZHANG K, MAO Y, LENG S, et al. Optimal delay constrained offloading for vehicular edge computing networks[C]// Proceedings of the 2017 IEEE International Conference on Communications. Piscataway: IEEE, 2017: 1-6. 10.1109/icc.2017.7997360
|
20 |
CHEN C, LI H, LI H, et al. Efficiency and fairness oriented dynamic task offloading in internet of vehicles[J]. IEEE Transactions on Green Communications and Networking, 2022, 6(3): 1481-1493. 10.1109/tgcn.2022.3167643
|
21 |
CHEN X, GE H, LIU L, et al. Computing offloading decision based on DDPG algorithm in mobile edge computing[C]// Proceedings of the 2021 IEEE 6th International Conference on Cloud Computing and Big Data Analytics. Piscataway: IEEE, 2021: 391-399. 10.1109/icccbda51879.2021.9442599
|
22 |
SILVER D, LEVER G, HEESS N, et al. Deterministic policy gradient algorithms[C]// Proceedings of the 31st International Conference on Machine Learning. New York: JMLR, 2014: 387-395.
|
23 |
WANG Y, FANG W, DING Y, et al. Computation offloading optimization for UAV-assisted mobile edge computing: a deep deterministic policy gradient approach[J]. Wireless Networks, 2021, 27: 2991-3006. 10.1007/s11276-021-02632-z
|
24 |
TRAN T X, POMPILI D. Joint task offloading and resource allocation for multi-server mobile-edge computing networks[J]. IEEE Transactions on Vehicular Technology, 2018, 68(1): 856-868. 10.1109/tvt.2018.2881191
|
25 |
CHENG N, LYU F, QUAN W, et al. Space/aerial-assisted computing offloading for IoT applications: a learning-based approach[J]. IEEE Journal on Selected Areas in Communications, 2019, 37(5): 1117-1129. 10.1109/jsac.2019.2906789
|