[1] GE X. Automatic markerless registration of point clouds with semantic-keypoint-based 4-points congruent sets[J]. ISPRS Journal of Photogrammetry and Remote Sensing,2017,130:344-357. [2] PERSAD R A, ARMENAKIS C. Automatic 3D surface coregistration using keypoint matching[J]. Photogrammetric Engineering and Remote Sensing,2017,83(2):137-151. [3] FILIPE S,ALEXANDRE L A. A comparative evaluation of 3D keypoint detectors in a RGB-D object dataset[C]//Proceedings of the 2014 International Conference on Computer Vision Theory and Applications. Piscataway:IEEE,2014:476-483. [4] TOMBARI F,SALTI S,DI STEFANO L. Performance evaluation of 3D keypoint detectors[J]. International Journal of Computer Vision,2013,102(1/3):198-220. [5] MITRA N J,NGUYEN A. Estimating surface normals in noisy point cloud data[C]//Proceedings of the 19th Annual Symposium on Computational Geometry. New York:ACM,2003:322-328. [6] 刘鹏, 王明阳, 王焱. 基于自适应动态球半径的k邻域搜索算法[J]. 机械设计与制造工程,2016,45(6):83-86. (LIU P, WANG M Y,WANG Y. k domain search algorithm based on adaptive dynamic sphere radius[J]. Machine Design and Manufacturing Engineering,2016,45(6):83-86.) [7] PAULY M,KEISER R,GROSS M. Multi-scale feature extraction on point-sampled surfaces[J]. Computer Graphics Forum,2003, 22(3):281-289. [8] DEMANTKÉ J,MALLET C,DAVID N,et al. Dimensionality based scale selection in 3D lidar point clouds[J]. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences,2011,38(5):97-102. [9] WEINMANN M, JUTZI B, MALLET C. Semantic 3D scene interpretation:a framework combining optimal neighborhood size selection with relevant features[J]. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences,2014,2(3):181-188. [10] 何鄂龙. 空间上下文车载激光点云分类及独立目标对象提取[D]. 武汉:中国地质大学,2018:10-22. (HE E L. Contextual classification for mobile LiDAR point cloud and the detection of individual objects[D]. Wuhan:China University of Geosciences, 2018:10-22.) [11] BLOMLEY R, WEINMANN M, LEITLOFF J, et al. Shape distribution features for point cloud analysis-a geometric histogram approach on multiple scales[J]. ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences,2014,2(3):9-16. [12] CHEN H,BHANU B. 3D free-form object recognition in range images using local surface patches[J]. Pattern Recognition Letters,2007,28(10):1252-1262. [13] ZHONG Y. Intrinsic shape signatures:a shape descriptor for 3D object recognition[C]//Proceedings of the IEEE 12th International Conference on Computer Vision Workshops. Piscataway:IEEE,2009:689-696. [14] MIAN A,BENNAMOUN M,OWENS R. On the repeatability and quality of keypoints for local feature-based 3D object retrieval from cluttered scenes[J]. International Journal of Computer Vision, 2010,89(2/3):348-361. [15] SUN J,OVSJANIKOV M,GUIBAS L. A concise and provably informative multi-scale signature based on heat diffusion[J]. Computer Graphics Forum,2009,28(5):1383-1392. [16] UNNIKRISHNAN R,HEBERT M. Multi-scale interest regions from unorganized point clouds[C]//Proceedings of the 2008 IEEE Computer Vision and Pattern Recognition Workshops. Piscataway:IEEE,2008:1-8. [17] ZAHARESCU A,BOYER E,VARANASI K,et al. Surface feature detection and description with applications to mesh matching[C]//Proceedings of the 2009 Computer Vision and Pattern Recognition. Piscataway:IEEE,2009:373-380. [18] BRONSTEIN M M,KOKKINOS I. Scale-invariant heat kernel signatures for non-rigid shape recognition[C]//Proceedings of the 2010 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2010:1704-1711. [19] 韩磊, 陈宇, 王春阳, 等. 一种自适应点云特征点提取算法[J]. 现代计算机(专业版),2018(11):48-52.(HAN L,CHEN Y, WANG C Y,et al. An adaptive feature point detection method for scattered point cloud[J]. Modern Computer (Professional Version),2018(11):48-52.) [20] 王庆华, 黄茹楠, 闫晓庚. 基于多判据的散乱点云特征点提取算法[J]. 计算机应用研究,2019,36(5):1585-1588. (WANG Q H,HUANG R N,YAN X G. Feature point extraction of scattered point cloud based on multiple criterions[J]. Application Research of Computers,2019,36(5):1585-1588.) |