[1] NIE F,SHI S,LI X. Auto-weighted multi-view co-clustering via fast matrix factorization[J]. Pattern Recognition, 2020, 102:No. 107207. [2] TANG C,ZHU X,LIU X,et al. Learning a joint affinity graph for multiview subspace clustering[J]. IEEE Transactions on Multimedia,2019,21(7):1724-1736. [3] ZHANG C,HU Q,FU H,et al. Latent multi-view subspace clustering[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2017:4333-4341. [4] LIU X,WANG L,ZHU X,et al. Absent multiple kernel learning algorithms[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2020,42(6):1303-1316. [5] ZHANG C,HAN Z,CUI Y,et al. CPM-Nets:cross partial multiview networks[C]//Proceedings of the 33rd International Conference on Neural Information Processing Systems. Red Hook:Curran Associates Inc.,2019:557-567. [6] WANG H,YANG Y,LIU B,et al. A study of graph-based system for multi-view clustering[J]. Knowledge-Based Systems,2019, 163:1009-1019. [7] NIE F,WANG X,JORDAN M I,et al. The constrained Laplacian rank algorithm for graph-based clustering[C]//Proceedings of the 30th AAAI Conference on Artificial Intelligence. Palo Alto,CA:AAAI Press,2016:1969-1976. [8] NIE F,WU D,WANG R,et al. Self-weighted clustering with adaptive neighbors[J]. IEEE Transactions on Neural Networks and Learning Systems,2020,31(9):3428-3441. [9] LU C,FENG J,LIN Z,et al. Subspace clustering by block diagonal representation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2019,41(2):487-501. [10] ZHENG A,ZHANG X,JIANG B,et al. A subspace learning approach to multishot person reidentification[J]. IEEE Transactions on Systems,Man,and Cybernetics:Systems,2020, 50(1):149-158. [11] PEI X,WU T,CHEN C. Automated graph regularized projective nonnegative matrix factorization for document clustering[J]. IEEE Transactions on Cybernetics,2014,44(10):1821-1831. [12] CAI D,HE X,HAN J. Locally consistent concept factorization for document clustering[J]. IEEE Transactions on Knowledge and Data Engineering,2011,23(6):902-913. [13] NIE F,LI J,LI X. Parameter-free auto-weighted multiple graph learning:a framework for multiview clustering and semisupervised classification[C]//Proceedings of the 25th International Joint Conference on Artificial Intelligence. Palo Alto,CA:AAAI Press,2016:1881-1887. [14] NIE F,CAI G,LI X. Multi-view clustering and semi-supervised classification with adaptive neighbours[C]//Proceedings of the 31st AAAI Conference on Artificial Intelligence. Palo Alto,CA:AAAI Press,2017:2408-2414. [15] ZHAN K,ZHANG C,GUAN J,et al. Graph learning for multiview clustering[J]. IEEE Transactions on Cybernetics,2018,48(10):2887-2895. [16] NIE F, LI J, LI X. Self-weighted multiview clustering with multiple graphs[C]//Proceedings of the 26th International Joint Conference on Artificial Intelligence. Palo Alto, CA:AAAI Press,2017:2564-2570. [17] REN P,XIAO Y,XU P,et al. Robust auto-weighted multi-view clustering[C]//Proceedings of the 27th International Joint Conference on Artificial Intelligence. Palo Alto, CA:AAAI Press,2018:2644-2650. [18] WANG H,YANG Y,LIU B. GMC:graph-based multi-view clustering[J]. IEEE Transactions on Knowledge and Data Engineering,2020,32(6):1116-1129. [19] SHAHID N, KALOFOLIAS V, BRESSON X, et al. Robust principal component analysis on graphs[C]//Proceedings of the 2015 IEEE International Conference on Computer Vision. Piscataway:IEEE,2015:2812-2820. [20] XIA S,ZHANG Z,LI W,et al. GBNRS:a novel rough set algorithm for fast adaptive attribute reduction in classification[J]. IEEE Transactions on Knowledge and Data Engineering,2020(Early Access):1-1. [21] XIA S, LIU Y, DING X, et al. Granular ball computing classifiers for efficient, scalable and robust learning[J]. Information Sciences,2019,483:136-152. [22] XIA S,WANG G,CHEN Z,et al. Complete random forest based class noise filtering learning for improving the generalizability of classifiers[J]. IEEE Transactions on Knowledge and Data Engineering,2019,31(11):2063-2078. [23] NIE F, WANG X, HUANG H. Clustering and projected clustering with adaptive neighbors[C]//Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York:ACM,2014:977-986. [24] 章永来, 周耀鉴. 聚类算法综述[J]. 计算机应用,2019,39(7):1869-1882.(ZHANG Y L,ZHOU Y J. Review of clustering algorithms[J]. Journal of Computer Applications,2019,39(7):1869-1882.) [25] LIN Z,LIU R,SU Z. Linearized alternating direction method with adaptive penalty for low-rank representation[C]//Proceedings of the 24th International Conference on Neural Information Processing Systems. Red Hook,NY:Curran Associates Inc., 2011:612-620. [26] HEN C,QIAN H,CHEN W,et al. Auto-weighted multi-view constrained spectral clustering[J]. Neurocomputing,2019,366:1-11. [27] CHEN M,HUANG L,WANG C,et al. Multi-view clustering in latent embedding space[C]//Proceedings of the 34th AAAI Conference on Artificial Intelligence. Palo Alto, CA:AAAI Press,2020:3513-3520. [28] VAN DER MAATEN L,HINTON G. Visualizing data using t-SNE[J]. Journal of Machine Learning Research,2008,9(86):2579-2605. [29] 李杏峰, 黄玉清, 任珍文. 联合低秩稀疏的多核子空间聚类算法[J]. 计算机应用,2020,40(6):1648-1653.(LI X F,HUANG Y Q,REN Z W. Joint low-rank and sparse multiple kernel subspace clustering algorithm[J]. Journal of Computer Applications,2020,40(6):1648-1653.) |