About author:ZHANG Qingbo, born in 1994, Ph. D. candidate. Her research interests include recommendation system, artificial intelligence. WANG Bin, born in 1972, Ph. D., associate professor. His research interests include database, artificial intelligence.
Supported by:
the National Natural Science Foundation of China(61572122)
GOLDBERG D, NICHOLS D, OKI B M, et al. Using collaborative filtering to weave an information tapestry[J]. Communications of the ACM, 1992, 35(12):61-70. 10.1145/138859.138867
2
HARPER F M, KONSTAN J A. The MovieLens datasets: history and context[J]. ACM Transactions on Interactive Intelligent Systems, 2016, 5(4): No.19. 10.1145/2827872
3
LINDEN G, SMITH B, Amazon YORK J..com recommendations: item-to-item collaborative filtering[J]. IEEE Internet Computing, 2003, 7(1):76-80. 10.1109/mic.2003.1167344
4
WU Y, DUBOIS C, ZHENG A X, et al. Collaborative denoising auto-encoders for Top-N recommender systems[C]// Proceedings of the 9th ACM International Conference on Web Search and Data Mining. New York: ACM, 2016: 153-162. 10.1145/2835776.2835837
5
HUANG Z, CAUTIS B, CHENG R, et al. Entity-based query recommendation for long-tail queries[J]. ACM Transactions on Knowledge Discovery from Data, 2018, 12(6): No.64. 10.1145/3233186
6
HUANG Z, CAUTIS B, CHENG R, et al. KB-enabled query recommendation for long-tail queries[C]// Proceedings of the 25th ACM International on Conference on Information and Knowledge Management. New York: ACM, 2016 :2107-2112. 10.1145/2983323.2983650
7
HAMEDANI E M, KAEDI M. Recommending the long tail items through personalized diversification[J]. Knowledge-Based Systems, 2019, 164:348-357. 10.1016/j.knosys.2018.11.004
8
PANG J, GUO J, ZHANG W. Using multi-objective optimization to solve the long tail problem in recommender system[C]// Proceedings of the 23rd Pacific-Asia Conference on Knowledge Discovery and Data Mining, LNCS11441. Cham: Springer, 2019: 302-313.
9
WANG S, GONG M, LI H, et al. Multi-objective optimization for long tail recommendation[J]. Knowledge-Based System, 2016, 104:145-155. 10.1016/j.knosys.2016.04.018
10
YIN H, CUI B, LI J, et al. Challenging the long tail recommendation[J]. Proceedings of the VLDB Endowment, 2012, 5(9): 896-907. 10.14778/2311906.2311916
11
JOHNSON J, NG Y K. Using tripartite graphs to make long tail recommendations[C]// Proceedings of the 8th International Conference on Information, Intelligence, Systems and Applications. Piscataway: IEEE, 2017:1-6. 10.1109/iisa.2017.8316436
12
LUKE A, JOHNSON J, NG Y K. Recommending long-tail items using extended tripartite graphs[C]// Proceedings of the 2018 IEEE International Conference on Big Knowledge. Piscataway: IEEE, 2018: 123-130. 10.1109/icbk.2018.00024
13
JOHNSON J, NG Y K. Enhancing long tail item recommendations using tripartite graphs and Markov process[C]// Proceedings of the 2017 International Conference on Web Intelligence. New York: ACM, 2017: 761-768. 10.1145/3106426.3106439
14
GROZIN V, LEVINA A. Similar product clustering for long-tail cross-sell recommendation[C]// Proceedings of the 6th International Conference on Analysis of Images, Social Networks, and Texts. Berlin: Springer, 2017: 273-280.
15
TAKAMA Y, CHEN Y S, MISAWA R, et al. Analyzing potential of personal values-based user modeling for long tail item recommendation[J]. Journal of Advanced Computational Intelligence and Intelligent Informatics, 2018, 22(4): 506-513. 10.20965/jaciii.2018.p0506
16
ABDOLLAHPOURI H, BURKE R, MOBASHER B. Value-aware item weighting for long-tail recommendation[EB/OL]. [2019-01-10]. . 10.1145/3109859.3109912
HUANG L W, JIANG B T, LYU S Y, et al. Survey deep learning based recommender systems[J]. Chinese Journal of Computers, 2018, 41(7): 1619-1647. 10.11897/SP.J.1016.2018.01619
18
ZHOU Y, ZHOU J, LIU L, et al. RNN-based sequence-preserved attention for dependency parsing[C]// Proceedings of the 32nd AAAI Conference on Artificial Intelligence. Palo Alto, CA: AAAI Press, 2018:5738-5746. 10.1609/aaai.v34i07.6807
19
LECUN Y, BENGIO Y, HINTON G E. Deep learning[J]. Nature, 2015, 521(7553): 436-444. 10.1038/nature14539