1 |
张晓艳,王挺,陈火旺. 命名实体识别研究[J]. 计算机科学, 2005, 32(4):44-48. 10.3969/j.issn.1002-137X.2005.04.014
|
|
ZHANG X Y, WANG T, CHEN H W. Research on named entity recognition[J]. Computer Science, 2005, 32(4):44-48. 10.3969/j.issn.1002-137X.2005.04.014
|
2 |
COLLOBERT R, WESTON J, BOTTOU L, et al. Natural language processing almost from scratch[J]. The Journal of Machine Learning Research, 2011, 12: 2493-2573.
|
3 |
PETERS M E, AMMAR W, BHAGAVATULA C, et al. Semi-supervised sequence tagging with bidirectional language models[C]// Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics. Stroudsburg, PA: Association for Computational Linguistics, 2017:1756-1765. 10.18653/v1/p17-1161
|
4 |
SHAO Y, HARDMEIER C, TIEDEMANN J, et al. Character-based joint segmentation and pos tagging for Chinese using bidirectional RNN-CRF[C]// Proceedings of the 8th International Joint Conference on Natural Language Processing. Stroudsburg, PA: Association for Computational Linguistics, 2017:173-183.
|
5 |
REI M, CRICHTON G K O, PYYSALO S. Attending to characters in neural sequence labeling models[C]// Proceedings of the 26th International Joint Conference on Computational Linguistics. Stroudsburg, PA: Association for Computational Linguistics, 2016: 309-318.
|
6 |
KNÖBELREITER P, REINBACHER C, SHEKHOVTSOV A, et al. End-to-end training of hybrid CNN-CRF models for stereo[C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 1456-1465. 10.1109/cvpr.2017.159
|
7 |
黄昌宁,赵海.由字构词——中文分词新方法[C]// 中国中文信息学会二十五周年学术会议论文集.北京:中国中文信息学会,2006:53-56.
|
|
HUANG C N, ZHAO H. Word formation by characters: a new approach to Chinese word segmentation[C]// Proceedings of the 25th Anniversary Academic Conference of Chinese Information Processing Society of China. Beijing: Chinese Information Processing Society of China, 2006: 53-56.
|
8 |
ZHANG Y, YANG J. Chinese NER using lattice LSTM[C]// Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics. Stroudsburg, PA: Association for Computational Linguistics, 2018:1554-1564. 10.18653/v1/p18-1144
|
9 |
PETERS M E, NEUMANN M, IYYER M, et al. Deep contextualized word representations[C]// Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics. Stroudsburg, PA: Association for Computational Linguistics, 2018: 2227-2237. 10.18653/v1/n18-1202
|
10 |
DEVLIN J, CHANG M, LEE K, et al. BERT: pre-training of deep bidirectional transformers for language understanding[C]// Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics. Stroudsburg, PA: Association for Computational Linguistics, 2019:4171-4186. 10.18653/v1/n19-1423
|
11 |
BENGIO Y, DUCHARME R, VINCENT P, et al. A neural probabilistic language model[J]. The Journal of Machine Learning Research, 2003, 3:1137-1155. 10.1007/3-540-33486-6_6
|
12 |
VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. New York: Curran Associates Inc., 2017:6000-6010. 10.1016/s0262-4079(17)32358-8
|
13 |
SZEGEDY C, IOFFE S, VANHOUCKE V, et al. Inception-v4, inception-ResNet and the impact of residual connections on learning[C]// Proceedings of the 31st AAAI Conference on Artificial Intelligence. Palo Alto, CA: AAAI Press, 2016:4278-4284. 10.1109/cvpr.2016.308
|
14 |
BA J L, KIROS J R, HINTON G E. Layer normalization[EB/OL]. [2019-01-10]. .
|
15 |
BULSARI A B, SAXÉN H. A recurrent neural network for time-series modelling[M]// ALBRECHT R F, REEVES C R, STEELE N C. Artificial Neural Nets and Genetic Algorithms. Vienna: Springer, 1993:285-291. 10.1007/978-3-7091-7533-0_43
|
16 |
GERS F A, SCHMIDHUBER E. LSTM recurrent networks learn simple context-free and context-sensitive languages[J]. IEEE Transactions on Neural Networks, 2001, 12(6):1333-1340. 10.1109/72.963769
|
17 |
GRAVES A, JAITLY N, MOHAMED A R. Hybrid speech recognition with deep bidirectional LSTM[C]// Proceedings of the 2013 IEEE Workshop on Automatic Speech Recognition and Understanding. Piscataway: IEEE, 2013:273-278. 10.1109/asru.2013.6707742
|
18 |
GRAVES A. Generating sequences with recurrent neural networks[EB/OL]. [2019-01-10]. .
|
19 |
WOJEK C SCHIELE B. A dynamic conditional random field model for joint labeling of object and scene classes[C]// Proceedings of the 10th European Conference on Computer Vision, LNCS5305. Berlin: Springer, 2008:733-747.
|
20 |
VITERBI A J, WOLF J K, ZEHAVI E, et al. A pragmatic approach to trellis-coded modulation[J]. IEEE Communications Magazine, 1989, 27(7):11-19. 10.1109/35.31452
|
21 |
KINGMA D P, BA J L. Adam: a method for stochastic optimization[EB/OL]. [2019-01-10]..
|
22 |
WAHLBECK K, TUUNAINEN A, AHOKAS A, et al. Dropout rates in randomized antipsychotic drug trials[J]. Psychopharmacology, 2001, 155(3):230-233. 10.1007/s002130100711
|