[1] 王瑞, 李弼程, 杜文倩. 基于上下文词向量和主题模型的实体消歧方法[J]. 中文信息学报,2019,33(11):46-56.(WANG R,LI B C,DU W Q. Entity disambiguation method based on context word vector and topic model[J]. Journal of Chinese Information Processing,2019,33(11):46-56.) [2] 马晓军, 郭剑毅, 王红斌, 等. 融合词向量和主题模型的领域实体消歧[J]. 模式识别与人工智能,2017,30(12):1130-1137. (MA X J,GUO J Y,WANG H B,et al. Entity disambiguation in specific domains combining word vector and topic models[J]. Pattern Recognition and Artificial Intelligence,2017,30(12):1130-1137.) [3] 杨陟卓. 基于上下文翻译的有监督词义消歧研究[J]. 计算机科学,2017,44(4):252-255,280.(YANG Z Z. Supervised WSD method based on context translation[J]. Computer Science,2017, 44(4):252-255,280.) [4] 王苗, 杨鹏. 一种改进的无监督网络图词义消歧方法研究(英文)[J]. 机床与液压,2017,45(18):130-135.(WANG M, YANG P. An improved unsupervised word sense disambiguation method based on network graph(English)[J]. Machine Tool and Hydraulics,2017,45(18):130-135.) [5] 陈洋, 罗智勇. 一种基于Hownet的词向量表示方法[J]. 北京大学学报(自然科学版),2019,55(1):22-28.(CHEN Y,LUO Z Y. A word vector representation method based on Hownet[J]. Acta Scientiarum Naturalium Universitatis Pekinensis,2019,55(1):22-28.) [6] 范鹏程, 沈英汉, 许洪波, 等. 融合实体知识描述的实体联合消歧方法[J]. 中文信息学报,2020,34(7):42-49,78.(FAN P C, SHEN Y H,XU H B,et al. Joint entity disambiguation with entity knowledge description[J]. Journal of Chinese Information Processing,2020,34(7):42-49,78.) [7] 李小涛, 游树娟, 陈维. 一种基于词义向量模型的词语语义相似度算法[J]. 自动化学报,2020,46(8):1654-1669.(LI X T, YOU S J,CHEN W. An algorithm of semantic similarity between words based on word single-meaning embedding model[J]. Acta Automatica Sinica,2020,46(8):1654-1669.) [8] 张春祥, 赵凌云, 高雪瑶. 结合词形词性和译文的汉语词义消歧[J]. 哈尔滨理工大学学报,2020,25(3):131-136.(ZHANG C X,ZHAO L Y,GAO X Y. Chinese word sense disambiguation based on word-translation and part-of-speech[J]. Journal of Harbin University of Science and Technology,2020,25(3):131-136.) [9] 张雄, 陈福才, 黄瑞阳. 基于融合特征相似度的实体消歧方法研究[J]. 计算机应用研究,2017,34(2):347-350,396.(ZHANG X,CHEN F C,HUANG R Y. Research on entity disambiguation method based on fusion feature similarity[J]. Application Research of Computers,2017,34(2):347-350,396.) [10] 沈喆, 王毅, 姚毅凡, 等. 面向学术文献的作者名消歧方法研究综述[J]. 数据分析与知识发现,2020,4(8):15-27.(SHEN Z, WANG Y, YAO Y F, et al. Author name disambiguation techniques for academic literature:a review[J]. Data Analysis and Knowledge Discovery,2020,4(8):15-27.) [11] 王旭阳, 姜喜秋. 基于上下文信息的中文命名实体消歧方法研究[J]. 计算机应用研究,2018,35(4):1072-1075.(WANG X Y,JIANG X Q. Chinese named entity disambiguation method research based on context information[J]. Application Research of Computers,2018,35(4):1072-1075.) [12] MIKOLOV T,YIH W T,ZWEIG G. Linguistic regularities in continuous space word representations[C]//Proceedings of the 2013 Conference of the North American Chapter of the Association for Computational Linguistics:Human Language Technologies. Stroudsburg, PA:Association for Computational Linguistics, 2013:746-751. [13] 郭宇飞, 郝晓燕. 基于卷积神经网络的FrameNet框架消歧研究[J]. 中北大学学报(自然科学版),2020,41(4):346-351. (GUO Y F,HAO X Y. Research on disambiguation of FrameNet framework based on convolutional neural network[J]. Journal of North University of China(Natural Science Edition),2020,41(4):346-351.) [14] HUANG D C,WANG J L. An approach on Chinese microblog entity linking combining baidu encyclopaedia and word2vec[J]. Procedia Computer Science,2017,111:37-45. [15] CHEN X X,LIU Z Y,SUN M S. A unified model for word sense representation and disambiguation[C]//Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, PA:Association for Computational Linguistics, 2014:1025-1035. [16] 林泽斐, 欧石燕. 多特征融合的中文命名实体链接方法研究[J]. 情报学报,2019,38(1):68-78.(LIN Z F,OU S Y. Research on Chinese named entity linking method based on multifeature fusion[J]. Journal of the China Society for Scientific and Technical Information,2019,38(1):68-78.) [17] 曾健荣, 张仰森, 王思远, 等. 基于多特征融合的同名专家消歧方法研究[J]. 北京大学学报(自然科学版),2020,56(4):607-613.(ZENG J R,ZHANG Y S,WANG S Y,et al. Research on expert disambiguation of same name based on multi-feature fusion[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2020,56(4):607-613.) [18] 孙茂松, 陈新雄. 借重于人工知识库的词和义项的向量表示:以HowNet为例[J]. 中文信息学报,2016,30(6):1-6,14. (SUN M S,CHEN X X. Embedding for words and word senses based on human annotated knowledge base:a case study on HowNet[J]. Journal of Chinese Information Processing,2016,30(6):1-6,14.) [19] HACHEY B,RADFORD W,NOTHMAN J,et al. Evaluating entity linking with Wikipedia[J]. Artificial Intelligence,2013, 194:130-150. [20] 张涛, 刘康, 赵军. 一种基于图模型的维基概念相似度计算方法及其在实体链接系统中的应用[J]. 中文信息学报,2015,29(2):58-67. (ZHANG T, LIU K, ZHAO J. A graph-based similarity measure between Wikipedia concepts and its application in entity linking system[J]. Journal of Chinese Information Processing,2015,29(2):58-67.) [21] 赵畅, 李慧颖. 面向知识库问答的实体链接方法[J]. 中文信息学报,2019,33(11):125-133.(ZHAO C,LI H Y. An entity linking approach for knowledge base question answering[J]. Journal of Chinese Information Processing, 2019, 33(11):125-133.) |