1 KIM J H , LATTIMER B Y . Real-time probabilistic classification of fire and smoke using thermal imagery for intelligent firefighting robot[J]. Fire Safety Journal, 2015, 72: 40-49.
2 XIN Y , THUMULURU S , JIANG F , et al . An experimental study of automatic water cannon systems for fire protection of large open spaces[J]. Fire Technology, 2014, 50(2): 233-248.
3 TÖREYIN B U , DEDEOGLU Y , GÜDÜKBAY U , et al . Computer vision based method for real-time fire and flame detection[J]. Pattern Recognition Letters, 2006, 27(1): 49-58.
4 FOGGIA P , SAGGESE A , VENTO M . Real-time fire detection for video-surveillance applications using a combination of experts based on color, shape, and motion[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2015, 25(9): 1545-1556.
5 CHINO D Y T , AVALHAIS L P S , RODRIGUES J F , et al . BoWFire: detection of fire in still images by integrating pixel color and texture analysis[C]// Proceedings of the 28th SIBGRAPI Conference on Graphics, Patterns and Images. Piscataway: IEEE, 2015: 95-102.
6 MUHAMMAD K , AHMAD J , MEHMOOD I , et al . Convolutional neural networks based fire detection in surveillance videos[J]. IEEE Access, 2018, 6: 18174-18183.
7 FRIZZI S , KAABI R , BOUCHOUICHA M , et al . Convolutional neural network for video fire and smoke detection[C]// Proceedings of the 42nd Annual Conference of the IEEE Industrial Electronics Society. Piscataway: IEEE, 2016: 877-882.
8 MAKSYMIV O , RAK T, PELESHKO D . Real-time fire detection method combining AdaBoost , LBP and convolutional neural network in video sequence[C]// Proceedings of the 14th International Conference on the Experience of Designing and Application of CAD Systems in Microelectronics. Piscataway: IEEE, 2017: 351-353.
9 王华秋,刘轲 . 改进CMAC在森林火焰识别中的应用[J]. 计算机应用, 2011, 31(3):860-864. (WANG H Q, LIU K. Application of improved cerebella model articulation controller in forest fire recognition[J]. Journal of Computer Applications, 2011, 31(3):860-864
10 BARMPOUTIS P , DIMITROPOULOS K , KAZA K , et al . Fire detection from images using Faster R-CNN and multidimensional texture analysis[C]// Proceedings of the 2019 IEEE International Conference on Acoustics, Speech and Signal Processing. Piscataway: IEEE, 2019: 8301-8305.
11 REN S , HE K , GIRSHICK R , et al . Faster R-CNN: towards real-time object detection with region proposal networks[C]// Proceedings of the 28th International Conference on Neural Information Processing Systems. Cambridge: MIT Press, 2015: 91-99.
12 KIM B , LEE J . A video-based fire detection using deep learning models[J]. Applied Sciences, 2019, 9(14): No.2862.
13 GIRSHICK R , DONAHUE J , DARRELL T , et al . Rich feature hierarchies for accurate object detection and semantic segmentation[C]// Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2014: 580-587.
14 GIRSHICK R . Fast R-CNN[C]// Proceedings of the 2015 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2015: 1440-1448.
15 LIN T Y , MAIRE M , BELONGIE S , et al . Microsoft COCO: common objects in context[C]// Proceedings of the 2014 European Conference on Computer Vision, LNCS 8693. Cham: Springer, 2014: 740-755.
16 EVERINGHAM M , GOOL L VAN , WILLIAMS C K I , et al . The PASCAL Visual Object Classes (VOC) challenge[J]. International Journal of Computer Vision, 2010, 88(2): 303-338.
17 WANG J , CHEN K , YANG S , et al . Region proposal by guided anchoring[C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 2960-2969.
18 SONG G , LIU Y , JIANG M , et al . Beyond trade-off: accelerate FCN-based face detector with higher accuracy[C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 7756-7764.
19 LI X , LIU Z , LUO P , et al . Not all pixels are equal: difficulty-aware semantic segmentation via deep layer cascade[C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 6459-6468.
20 REDMON J , FARHADI A . YOLO 9000: better, faster, stronger[C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 6517-6525.
21 REDMON J , FARHADI A . Yolov 3: an incremental improvement[EB/OL].[2018-04-08].https://arxiv.org/pdf/1804.02767.pdf.
22 LIU W , ANGUELOV D , ERHAN D , et al . SSD: single shot multibox detector[C]// Proceedings of the 2016 European Conference on Computer Vision, LNCS 9905. Cham: Springer, 2016: 21-37.
23 LIN T Y , DOLLáR P , GIRSHICK R , et al . Feature pyramid networks for object detection[C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 936-944.
24 TOULOUSE T , ROSSI L , CAMPANA A , et al . Computer vision for wildfire research: an evolving image dataset for processing and analysis[J]. Fire Safety Journal, 2017, 92: 188-194. |