1 倪晨旭.计算机视觉研究综述[J].电子世界,2018(1):91,93.(NI C X. Computer vision research: a review [J]. Electronics World, 2018(1): 91, 93.) 2 张顺,龚怡宏,王进军.深度卷积神经网络的发展及其在计算机视觉领域的应用[J].计算机学报,2019,42(3):453-482. ZHANGS, GONGY H, WANGJ J. The development of deep convolution neural network and its applications on computer vision its applications on computer vision [J]. Chinese Journal of Computers, 2019, 42(3): 453-482. 3 MAHATAD, KURIAKOSEJ, SHAHR R, et al. Key2Vec: automatic ranked keyphrase extraction from scientific articles using phrase embeddings [C]// Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Stroudsburg: ACL, 2018: 634-639. 4 战学刚,吴强.基于TF统计和语法分析的关键词提取算法[J].计算机应用与软件,2014,31(1):47-49,92. ZHANX G, WUQ. Keyword extraction algorithm based on TF statistics and syntactic parsing [J]. Computer Applications and Software, 2014, 31(1):47-49, 92. 5 NGUYENT D, KANM Y. Keyphrase extraction in scientific publications [C]// Proceedings of the 2007 International Conference on Asian Digital Libraries, LNCS 4822. Berlin: Springer, 2007: 317-326. 6 HACOHEN-KERNERY. Automatic extraction of keywords from abstracts [C]// Proceedings of the 2003 International Conference on Knowledge-Based Intelligent Information and Engineering Systems, LNCS 2773. Berlin: Springer, 2003: 843-849. 7 姜霖,王东波.采用连续词袋模型(CBOW)的领域术语自动抽取研究[J].现代图书情报技术,2016(2):9-15. JIANGL, WANGD B. Automatic extraction of domain terms using continuous bag-of-words model [J]. New Technology of Library and Information Service, 2016(2): 9-15. 8 余小军,刘峰,张春.基于N-Gram文本特征提取的改进算法[J].现代计算机(专业版),2012(34):3-7. YUX J, LIUF, ZHANGC. Improved text feature extraction algorithm based on N-Gram [J]. Modern Computer, 2012(34): 3-7. 9 罗燕,赵书良,李晓超,等.基于词频统计的文本关键词提取方法[J].计算机应用,2016,36(3):718-725. LUOY, ZHAOS L, LIX C, et al. Text keyword extraction method based on word frequency statistics [J]. Journal of Computer Applications, 2016, 36(3): 718-725. 10 LIT, BAIJ, YANGX, et al. Co-occurrence network of high-frequency words in the bioinformatics literature: structural characteristics and evolution [J]. Applied Sciences, 2018, 8(10): Article No.1994. 11 柳佳刚,陈山.基于PAT-tree的中文关键词自动检索模式的研究[J].计算技术与自动化,2009,28(2):119-123. LIUJ G, CHENS. Pattern research of automatic Chinese keyword retrieval based on PAT-tree [J]. Computing Technology and Automation, 2009, 28(2): 119-123. 12 ZHAOL, HUANGL, ZANGL, et al. LMLSTM: extract event-oriented keyphrase from news stream [C]// Proceedings of the 2019 International Joint Conference on Neural Networks. Piscataway: IEEE, 2019: 1-7. 13 LIUZ, HUANGW, ZHENGY, et al. Automatic keyphrase extraction via topic decomposition [C]// Proceedings of the 2010 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2010:366-376. 14 HASANK S, NG V. Conundrums in unsupervised keyphrase extraction: making sense of the state-of-the-art [C]// Proceedings of the 23rd International Conference on Computational Linguistics. Stroudsburg: ACL, 2010:365-373. 15 MIHALCEAR, TARAUP. TextRank: bringing order into texts [EB/OL]. [2019-02-20].https://web.eecs.umich.edu/~mihalcea/papers/mihalcea.emnlp04.pdf. 16 BORDOLOIM, BISWASS K. Keyword extraction from micro-blogs using collective weight [J]. Social Network Analysis and Mining, 2018, 8(1): Article No.58. 17 叶雪梅,毛雪岷,夏锦春,等.文本分类TF-IDF算法的改进研究[J].计算机工程与应用,2019,55(2):104-109,161. YEX M, MAOX M, XIAJ C, et al. Improved approach to TF-IDF algorithm in text classification [J]. Computer Engineering and Applications, 2019, 55(2): 104-109, 161. 18 李新福,赵蕾蕾,何海斌,等.使用Logistic回归模型进行中文文本分类[J].计算机工程与应用,2009,45(14):152-154. LIX F, ZHAOL L, HEH B, et al. Using Logistic regression model for Chinese text categorization [J]. Computer Engineering and Applications, 2009, 45(14): 152-154. 19 陈海红.多核SVM文本分类研究[J].软件,2015,36(5):7-10. CHENH H. Research on the text classification based on multi-kernel support vector machine [J]. Computer Engineering & Software, 2015, 36(5): 7-10. 20 WANGP, XUB, XUJ, et al. Semantic expansion using word embedding clustering and convolutional neural network for improving short text classification [J]. Neurocomputing, 2016, 174:806-814. 21 BANERJEEI, LINGY, CHENM C, et al. Comparative effectiveness of Convolutional Neural Network (CNN) and Recurrent Neural Network (RNN) architectures for radiology text report classification [J]. Artificial Intelligence in Medicine, 2019, 97: 79-88. 22 CHENGY, YEZ, WANGM, et al. Document classification based on convolutional neural network and hierarchical attention network [J]. Neural Network World, 2019, 29(2): 83-98. 23 卢宏涛,张秦川.深度卷积神经网络在计算机视觉中的应用研究综述[J].数据采集与处理,2016,31(1):1-17. LUH T, ZHANGQ C. Applications of deep convolutional neural network in computer vision [J]. Journal of Data Acquisition and Processing, 2016, 31(1): 1-17. 24 陈丹雯,张俊,韩兵,等.基于改进词袋模型的相似关键帧匹配方法[J].计算机工程与设计,2011,32(8):2752-2755,2844. CHEND W, ZHANGJ, HANB, et al. Near-duplicate keyframe matching based on advanced bag-of-words model [J]. Computer Engineering and Design, 2011, 32(8): 2752-2755, 2844. 25 武永亮,赵书良,李长镜,等.基于TF-IDF和余弦相似度的文本分类方法[J].中文信息学报,2017,31(5):138-145. WUY L, ZHAOS L, LIC J, et al. Text classification method based on TF-IDF and cosine similarity [J]. Journal of Chinese Information Processing, 2017, 31(5): 138-145. 26 李锋刚,梁钰,GAOX Z,等.基于LDA-wSVM模型的文本分类研究[J].计算机应用研究,2015,32(1):21-25. LIF G, LIANGY, GAOX Z, et al. Research on text categorization based on LDA-wSVM model [J]. Application Research of Computers, 2015, 32(1):21-25. |