Journal of Computer Applications ›› 2024, Vol. 44 ›› Issue (4): 1002-1009.DOI: 10.11772/j.issn.1001-9081.2023050623
Special Issue: 第九届全国智能信息处理学术会议(NCIIP 2023)
• The 9th National Conference on Intelligent Information Processing(NCIIP 2023) • Previous Articles Next Articles
Bin XIAO1,2, Mo YANG1,2, Min WANG3(), Guangyuan QIN1, Huan LI4
Received:
2023-05-22
Revised:
2023-06-14
Accepted:
2023-06-15
Online:
2023-08-01
Published:
2024-04-10
Contact:
Min WANG
About author:
XIAO Bin, born in 1978, M. S., professor. His research interests include software engineering, enterprise informatization.Supported by:
肖斌1,2, 杨模1,2, 汪敏3(), 秦光源1, 李欢4
通讯作者:
汪敏
作者简介:
肖斌(1978—),男,重庆人,教授,硕士,CCF会员,主要研究方向:软件工程、企业信息化基金资助:
CLC Number:
Bin XIAO, Mo YANG, Min WANG, Guangyuan QIN, Huan LI. Domain generalization method of phase-frequency fusion from independent perspective[J]. Journal of Computer Applications, 2024, 44(4): 1002-1009.
肖斌, 杨模, 汪敏, 秦光源, 李欢. 独立性视角下的相频融合领域泛化方法[J]. 《计算机应用》唯一官方网站, 2024, 44(4): 1002-1009.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2023050623
数据集 | 类别 | 领域数 | 图像数 |
---|---|---|---|
PACS | 7 | 4 | 9 991 |
VLCS | 5 | 4 | 12 237 |
Office-Home | 65 | 4 | 15 500 |
Tab. 1 Statistics for domain generalization datasets
数据集 | 类别 | 领域数 | 图像数 |
---|---|---|---|
PACS | 7 | 4 | 9 991 |
VLCS | 5 | 4 | 12 237 |
Office-Home | 65 | 4 | 15 500 |
方法 | PACS | 均值 | |||
---|---|---|---|---|---|
Art | Cartoon | Photo | Sketch | ||
ResNet-18 | 76.61 | 73.60 | 93.31 | 76.08 | 79.90 |
MLDG | 79.50 | 77.30 | 94.30 | 71.50 | 80.65 |
MMLD | 81.28 | 77.16 | 96.09 | 72.29 | 81.71 |
FAR | 79.30 | 77.70 | 95.30 | 74.70 | 81.75 |
MixStyle | 84.10 | 78.80 | 96.10 | 75.90 | 83.73 |
StableNet | 81.74 | 79.91 | 96.53 | 80.50 | 84.69 |
StableNet* | 83.45 | 79.60 | 94.97 | 78.92 | 84.24 |
RSC | 83.43 | 80.31 | 95.99 | 80.85 | 85.15 |
RSC* | 80.55 | 78.60 | 94.43 | 76.02 | 82.40 |
MASF | 80.29 | 77.17 | 94.99 | 71.79 | 81.06 |
FACT | 85.37 | 78.38 | 95.15 | 79.15 | 84.51 |
本文方法 | 84.47 | 81.27 | 94.61 | 80.17 | 85.13 |
Tab. 2 Comparison of Top-1 classification accuracy of different methods on PACS dataset
方法 | PACS | 均值 | |||
---|---|---|---|---|---|
Art | Cartoon | Photo | Sketch | ||
ResNet-18 | 76.61 | 73.60 | 93.31 | 76.08 | 79.90 |
MLDG | 79.50 | 77.30 | 94.30 | 71.50 | 80.65 |
MMLD | 81.28 | 77.16 | 96.09 | 72.29 | 81.71 |
FAR | 79.30 | 77.70 | 95.30 | 74.70 | 81.75 |
MixStyle | 84.10 | 78.80 | 96.10 | 75.90 | 83.73 |
StableNet | 81.74 | 79.91 | 96.53 | 80.50 | 84.69 |
StableNet* | 83.45 | 79.60 | 94.97 | 78.92 | 84.24 |
RSC | 83.43 | 80.31 | 95.99 | 80.85 | 85.15 |
RSC* | 80.55 | 78.60 | 94.43 | 76.02 | 82.40 |
MASF | 80.29 | 77.17 | 94.99 | 71.79 | 81.06 |
FACT | 85.37 | 78.38 | 95.15 | 79.15 | 84.51 |
本文方法 | 84.47 | 81.27 | 94.61 | 80.17 | 85.13 |
算法 | Office-Home | 均值 | |||
---|---|---|---|---|---|
Art | Clipart | Product | Real-World | ||
MMD-AAE | 56.50 | 47.30 | 72.10 | 74.80 | 62.68 |
DADG | 55.57 | 48.71 | 70.90 | 73.70 | 62.22 |
JiGen | 53.04 | 47.51 | 71.47 | 72.79 | 61.20 |
RSC | 58.42 | 47.90 | 71.63 | 74.54 | 63.12 |
SagNet | 60.20 | 45.30 | 70.40 | 73.30 | 62.30 |
本文方法 | 57.10 | 52.42 | 72.25 | 73.90 | 63.92 |
Tab. 3 Comparison of Top-1 classification accuracy of different methods on Office-Home dataset
算法 | Office-Home | 均值 | |||
---|---|---|---|---|---|
Art | Clipart | Product | Real-World | ||
MMD-AAE | 56.50 | 47.30 | 72.10 | 74.80 | 62.68 |
DADG | 55.57 | 48.71 | 70.90 | 73.70 | 62.22 |
JiGen | 53.04 | 47.51 | 71.47 | 72.79 | 61.20 |
RSC | 58.42 | 47.90 | 71.63 | 74.54 | 63.12 |
SagNet | 60.20 | 45.30 | 70.40 | 73.30 | 62.30 |
本文方法 | 57.10 | 52.42 | 72.25 | 73.90 | 63.92 |
算法 | VLCS | 均值 | |||
---|---|---|---|---|---|
Caltech | LabelMe | VOC | Sun | ||
JiGen | 96.17 | 62.06 | 70.93 | 71.40 | 75.14 |
M-ADA | 74.33 | 48.38 | 45.13 | 33.82 | 50.42 |
MMLD | 97.01 | 62.20 | 73.01 | 72.49 | 76.18 |
RSC | 96.21 | 62.51 | 73.81 | 72.10 | 76.16 |
StableNet | 96.67 | 65.36 | 73.59 | 74.97 | 77.65 |
本文方法 | 96.75 | 67.17 | 74.61 | 74.41 | 78.24 |
Tab. 4 Comparison of Top-1 classification accuracy of different methods on VLCS dataset
算法 | VLCS | 均值 | |||
---|---|---|---|---|---|
Caltech | LabelMe | VOC | Sun | ||
JiGen | 96.17 | 62.06 | 70.93 | 71.40 | 75.14 |
M-ADA | 74.33 | 48.38 | 45.13 | 33.82 | 50.42 |
MMLD | 97.01 | 62.20 | 73.01 | 72.49 | 76.18 |
RSC | 96.21 | 62.51 | 73.81 | 72.10 | 76.16 |
StableNet | 96.67 | 65.36 | 73.59 | 74.97 | 77.65 |
本文方法 | 96.75 | 67.17 | 74.61 | 74.41 | 78.24 |
幅度融合 | 特征独立性策略 | Art | Cartoo | Photo | Sketch | 均值 |
---|---|---|---|---|---|---|
— | — | 76.61 | 73.60 | 93.31 | 76.08 | 79.90 |
√ | — | 83.31 | 81.23 | 95.63 | 77.45 | 84.41 |
— | √ | 83.44 | 79.60 | 94.97 | 78.92 | 84.32 |
√ | √ | 84.47 | 81.27 | 94.61 | 80.17 | 85.13 |
Tab. 5 Ablation experiment results on PACS datasets
幅度融合 | 特征独立性策略 | Art | Cartoo | Photo | Sketch | 均值 |
---|---|---|---|---|---|---|
— | — | 76.61 | 73.60 | 93.31 | 76.08 | 79.90 |
√ | — | 83.31 | 81.23 | 95.63 | 77.45 | 84.41 |
— | √ | 83.44 | 79.60 | 94.97 | 78.92 | 84.32 |
√ | √ | 84.47 | 81.27 | 94.61 | 80.17 | 85.13 |
1 | KARPATHY A, TODERICI G, SHETTY S, et al. Large-scale video classification with convolutional neural networks [C]// Proceedings of 2014 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2014: 1725-1732. 10.1109/cvpr.2014.223 |
2 | 范苍宁,刘鹏,肖婷,等.深度域适应综述:一般情况与复杂情况[J].自动化学报,2021,47(3):515-548. 10.16383/j.aas.c200238 |
FAN C N, LIU P, XIAO T, et al. A review on depth domain adaption: general situation and complex situation[J]. Acta Automatica Sinica, 2021,47(3): 515-548. 10.16383/j.aas.c200238 | |
3 | TAN C, SUN F, KONG T, et al. A survey on deep transfer learning [C]// Proceedings of the 2018 International Conference on Artificial Neural Networks: Artificial Neural Networks and Machine Learning. Cham: Springer, 2018: 270-279. 10.1007/978-3-030-01424-7_27 |
4 | WANG J, LAN C, LIU C, et al. Generalizing to unseen domains: a survey on domain generalization [C]// Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence.[S.l.]: IJCAI, 2021: 4627-4635. 10.24963/ijcai.2021/628 |
5 | PRAKASH A, BOOCHOON S, BROPHY M, et al. Structured domain randomization: bridging the reality gap by context-aware synthetic data [C]// Proceedings of the 2019 International Conference on Robotics and Automation. Piscataway: IEEE, 2019: 7249-7255. 10.1109/icra.2019.8794443 |
6 | HUANG J, GUAN D, XIAO A, et al. FSDR: frequency space domain randomization for domain generalization [C]// Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 6887-6898. 10.1109/cvpr46437.2021.00682 |
7 | ZHOU K Y, YANG Y X, HOSPEDALES T, et al. Deep domain-adversarial image generation for domain generalisation[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2020, 34(7): 13025-13032. 10.1609/aaai.v34i07.7003 |
8 | ARJOVSKY M, BOTTOU L, GULRAJANI I, et al. Invariant risk minimization[EB/OL]. (2019-07-05)[2023-05-01]. . |
9 | ZHANG H, ZHANG Y-F, LIU W, et al. Towards principled disentanglement for domain generalization [C]// Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2022: 8014-8024. 10.1109/cvpr52688.2022.00786 |
10 | LIN Y, DONG H, WANG H, et al. Bayesian invariant risk minimization [C]// Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2022: 16000-16009. 10.1109/cvpr52688.2022.01555 |
11 | KIM D, YOO Y, PARK S, et al. SelfReg: self-supervised contrastive regularization for domain generalization [C]// Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2021: 9599-9608. 10.1109/iccv48922.2021.00948 |
12 | XU J, XIAO L, LÓPEZ A M. Self-supervised domain adaptation for computer vision tasks[J]. IEEE Access, 2019, 7: 156694-156706. 10.1109/access.2019.2949697 |
13 | VENKATESWARA H, EUSEBIO J, CHAKRABORTY S, et al. Deep hashing network for unsupervised domain adaptation[C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 5385-5394. 10.1109/cvpr.2017.572 |
14 | WEN J, LIU R, ZHENG N, et al. Exploiting local feature patterns for unsupervised domain adaptation[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2019, 33(1): 5401-5408. 10.1609/aaai.v33i01.33015401 |
15 | PAN S J, TSANG I W, KWOK J T, et al. Domain adaptation via transfer component analysis[J]. IEEE Transactions on Neural Networks, 2011, 22(2): 199-210. 10.1109/tnn.2010.2091281 |
16 | TZENG E, HOFFMAN J, ZHANG N, et al. Deep domain confusion: maximizing for domain invariance [EB/OL]. (2014-12-10) [2023-05-01]. . |
17 | KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017, 60(6): 84-90. 10.1145/3065386 |
18 | ZHU Y, ZHUANG F, WANG J, et al. Deep subdomain adaptation network for image classification[J]. IEEE Transactions on Neural Networks and Learning Systems, 2021, 32(4): 1713-1722. 10.1109/tnnls.2020.2988928 |
19 | SHU Y, CAO Z, WANG C, et al. Open domain generalization with domain-augmented meta-learning [C]// Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 9619-9628. 10.1109/cvpr46437.2021.00950 |
20 | XU Q, ZHANG R, ZHANG Y, et al. A Fourier-based framework for domain generalization [C]// Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington, DC: IEEE Computer Society, 2021: 14378-14387. 10.1109/cvpr46437.2021.01415 |
21 | HU S, ZHANG K, CHEN Z, et al. Domain generalization via multidomain discriminant analysis [C]// Proceedings of the 35th Uncertainty in Artificial Intelligence Conference. New York: JMLR.org, 2020: 292-302. |
22 | MITROVIC J, McWILLIAMS B, WALKER J, et al. Representation learning via invariant causal mechanisms [EB/OL]. (2020-10-15)[2023-05-01]. . |
23 | SHI Y, SEELY J, TORR P H S, et al. Gradient matching for domain generalization[EB/OL]. (2021-04-20)[2023-05-01]. . |
24 | DUBEY A, RAMANATHAN V, PENTLAND A, et al. Adaptive methods for real-world domain generalization [C]// Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE,2021: 14335-14344. 10.1109/cvpr46437.2021.01411 |
25 | RAHIMI A, RECHT B. Random features for large-scale kernel machines [C]// Proceedings of the 20th International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2007: 1177-1184. 10.7551/mitpress/7503.003.0144 |
26 | LE Q V, SARLOS T, SMOLA A J. Fastfood: approximate kernel expansions in loglinear time [EB/OL]. (2014-08-13)[2023-05-01]. . |
27 | ATARASHI K, MAJI S, OYAMA S. Random feature maps for the itemset kernel[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2019, 33(1): 3199-3206. 10.1609/aaai.v33i01.33013199 |
28 | HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition [C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 770-778. 10.1109/cvpr.2016.90 |
29 | LI D, YANG Y, SONG Y-Z, et al. Learning to generalize: meta-learning for domain generalization[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2018, 32(1): 3490-3497. 10.1609/aaai.v32i1.11596 |
30 | MATSUURA T, HARADA T. Domain generalization using a mixture of multiple latent domains[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2020, 34(7): 11749-11756. 10.1609/aaai.v34i07.6846 |
31 | JIN X, LAN C, ZENG W, et al. Feature alignment and restoration for domain generalization and adaptation [EB/OL]. (2020-06-22) [2023-05-01]. . 10.1109/tmm.2021.3104379 |
32 | HUANG Z, WANG H, XING E P, et al. Self-challenging improves cross-domain generalization [C]// Proceedings of the 2020 European Conference on Computer Vision. Cham: Springer, 2020: 124-140. 10.1007/978-3-030-58536-5_8 |
33 | ZHANG X, CUI P, XU R, et al. Deep stable learning for out-of-distribution generalization [C]// Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 5368-5378. 10.1109/cvpr46437.2021.00533 |
34 | ZHOU K, YANG Y, QIAO Y, et al. Domain generalization with MixStyle [EB/OL]. (2021-04-05)[2023-05-01]. . 10.1007/s11263-023-01913-8 |
35 | DOU Q, CASTRO D C, KAMNITSAS K, et al. Domain generalization via model-agnostic learning of semantic features [C]// Proceedings of the 33rd International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2019: 6450‑6461. |
36 | LI H, PAN S J, WANG S, et al. Domain generalization with adversarial feature learning [C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE,2018: 5400-5409. 10.1109/cvpr.2018.00566 |
37 | CHEN K, ZHUANG D, CHANG J M. Discriminative adversarial domain generalization with meta-learning based cross-domain validation[J]. Neurocomputing, 2022, 467: 418-426. 10.1016/j.neucom.2021.09.046 |
38 | CARLUCCI F M, D’INNOCENTE A, BUCCI S, et al. Domain generalization by solving jigsaw puzzles [C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 2224-2233. 10.1109/cvpr.2019.00233 |
39 | NAM H, LEE H, PARK J, et al. Reducing domain gap by reducing style bias [C]// Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition.Piscataway: IEEE, 2021: 8686-8695. 10.1109/cvpr46437.2021.00858 |
40 | QIAO F, ZHAO L, PENG X. Learning to learn single domain generalization [C]// Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 12553-12562. 10.1109/cvpr42600.2020.01257 |
[1] | Rui SHI, Yong LI, Yanhan ZHU. Adversarial sample attack algorithm of modulation signal based on equalization of feature gradient [J]. Journal of Computer Applications, 2024, 44(8): 2521-2527. |
[2] | Dongwei WANG, Baichen LIU, Zhi HAN, Yanmei WANG, Yandong TANG. Deep network compression method based on low-rank decomposition and vector quantization [J]. Journal of Computer Applications, 2024, 44(7): 1987-1994. |
[3] | Feiyu ZHAI, Handa MA. Hybrid classical-quantum classification model based on DenseNet [J]. Journal of Computer Applications, 2024, 44(6): 1905-1910. |
[4] | Mei WANG, Xuesong SU, Jia LIU, Ruonan YIN, Shan HUANG. Time series classification method based on multi-scale cross-attention fusion in time-frequency domain [J]. Journal of Computer Applications, 2024, 44(6): 1842-1847. |
[5] | Xue LI, Guangle YAO, Honghui WANG, Jun LI, Haoran ZHOU, Shaoze YE. Remote sensing image classification based on sample incremental learning [J]. Journal of Computer Applications, 2024, 44(3): 732-736. |
[6] | Mengmei YAN, Dongping YANG. Review of mean field theory for deep neural network [J]. Journal of Computer Applications, 2024, 44(2): 331-343. |
[7] | Li XIE, Weiping SHU, Junjie GENG, Qiong WANG, Hailin YANG. Few-shot cervical cell classification combining weighted prototype and adaptive tensor subspace [J]. Journal of Computer Applications, 2024, 44(10): 3200-3208. |
[8] | Wen ZHOU, Yuzhang CHEN, Zhiyuan WEN, Shiqi WANG. Fish image classification based on positional overlapping patch embedding and multi-scale channel interactive attention [J]. Journal of Computer Applications, 2024, 44(10): 3209-3216. |
[9] | Wenze CHAI, Jing FAN, Shukui SUN, Yiming LIANG, Jingfeng LIU. Overview of deep metric learning [J]. Journal of Computer Applications, 2024, 44(10): 2995-3010. |
[10] | Tong CHEN, Jiwei WEI, Shiyuan HE, Jingkuan SONG, Yang YANG. Adversarial training method with adaptive attack strength [J]. Journal of Computer Applications, 2024, 44(1): 94-100. |
[11] | Yunfei SHEN, Fei SHEN, Fang LI, Jun ZHANG. Deep neural network model acceleration method based on tensor virtual machine [J]. Journal of Computer Applications, 2023, 43(9): 2836-2844. |
[12] | Xujian ZHAO, Hanglin LI. Deep neural network compression algorithm based on hybrid mechanism [J]. Journal of Computer Applications, 2023, 43(9): 2686-2691. |
[13] | Gan LI, Mingdi NIU, Lu CHEN, Jing YANG, Tao YAN, Bin CHEN. Robotic grasp detection in low-light environment by incorporating visual feature enhancement mechanism [J]. Journal of Computer Applications, 2023, 43(8): 2564-2571. |
[14] | Xiaolin LI, Songjia YANG. Hybrid beamforming for multi-user mmWave relay networks using deep learning [J]. Journal of Computer Applications, 2023, 43(8): 2511-2516. |
[15] | Bin WANG, Tian XIANG, Yidong LYU, Xiaofan WANG. Adaptive multi-scale feature channel grouping optimization algorithm based on NSGA‑Ⅱ [J]. Journal of Computer Applications, 2023, 43(5): 1401-1408. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||