Journal of Computer Applications ›› 2024, Vol. 44 ›› Issue (2): 403-410.DOI: 10.11772/j.issn.1001-9081.2023030270
Special Issue: 人工智能
• Artificial intelligence • Previous Articles Next Articles
Jiawei ZHANG1,2, Guandong GAO2,3(), Ke XIAO1,4, Shengzun SONG5
Received:
2023-03-16
Revised:
2023-05-09
Accepted:
2023-05-11
Online:
2023-05-23
Published:
2024-02-10
Contact:
Guandong GAO
About author:
ZHANG Jiawei, born in 1998, M. S. candidate. His research interests include natural language processing, criminal psychological portrait.Supported by:
通讯作者:
高冠东
作者简介:
张家伟(1998—),男,河北邯郸人,硕士研究生,主要研究方向:自然语言处理、犯罪心理画像基金资助:
CLC Number:
Jiawei ZHANG, Guandong GAO, Ke XIAO, Shengzun SONG. Violent crime hierarchy algorithm by joint modeling of improved hierarchical attention network and TextCNN[J]. Journal of Computer Applications, 2024, 44(2): 403-410.
张家伟, 高冠东, 肖珂, 宋胜尊. 基于改进分层注意网络和TextCNN联合建模的暴力犯罪分级算法[J]. 《计算机应用》唯一官方网站, 2024, 44(2): 403-410.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2023030270
参数 | 参数值 |
---|---|
Kernels size | 3,4,5 |
Number of kernels | 128 |
Number of Bi-GRU Layers | 1 |
Number of Bi-GRU hidden units | 64 |
Batch size | 128 |
Epoch | 50 |
Loss function | Focal Loss |
Learning rate | 0.001 |
Tab. 1 Hyperparameter setting
参数 | 参数值 |
---|---|
Kernels size | 3,4,5 |
Number of kernels | 128 |
Number of Bi-GRU Layers | 1 |
Number of Bi-GRU hidden units | 64 |
Batch size | 128 |
Epoch | 50 |
Loss function | Focal Loss |
Learning rate | 0.001 |
类型 | 训练集样本数 | 验证集样本数 | 测试集样本数 | 总计 |
---|---|---|---|---|
总计 | 2 800 | 933 | 932 | 4 665 |
胆汁质 | 1 340 | 446 | 446 | 2 232 |
多血质 | 1 178 | 393 | 392 | 1 963 |
粘液质 | 279 | 93 | 93 | 465 |
抑郁质 | 3 | 1 | 1 | 5 |
Tab. 2 Dataset division
类型 | 训练集样本数 | 验证集样本数 | 测试集样本数 | 总计 |
---|---|---|---|---|
总计 | 2 800 | 933 | 932 | 4 665 |
胆汁质 | 1 340 | 446 | 446 | 2 232 |
多血质 | 1 178 | 393 | 392 | 1 963 |
粘液质 | 279 | 93 | 93 | 465 |
抑郁质 | 3 | 1 | 1 | 5 |
类型 | 模型 | Acc | Macro_P | Macro_R | Macro_F1 | Macro_AUC | Micro_P | Micro_R | Micro_F1 | Micro_AUC |
---|---|---|---|---|---|---|---|---|---|---|
犯罪事实 语义建模 | HAN | 90.45 | 64.72 | 67.87 | 66.05 | 86.89 | 90.45 | 90.45 | 90.45 | 97.40 |
HAN+Focal Loss | 91.52 | 67.68 | 69.70 | 68.61 | 88.77 | 91.52 | 91.52 | 91.52 | 98.72 | |
HAN+Focal Loss+位置编码 | 92.60 | 67.74 | 68.87 | 68.27 | 94.48 | 92.60 | 92.60 | 92.60 | 98.88 | |
HAN+Focal Loss+位置编码+显著向量 | 96.57 | 71.82 | 72.14 | 71.96 | 97.88 | 96.57 | 96.57 | 96.57 | 99.61 | |
HAN+Focal Loss+位置编码+ 显著向量+GAP | 97.10 | 72.69 | 71.79 | 72.21 | 98.09 | 97.10 | 97.10 | 97.10 | 99.51 | |
犯罪基本 情况语义 建模 | TextCNN | 92.60 | 69.33 | 68.62 | 68.96 | 85.52 | 92.60 | 92.60 | 92.60 | 99.10 |
TextCNN+Focal Loss | 93.45 | 70.92 | 69.81 | 70.30 | 89.48 | 93.45 | 93.45 | 93.45 | 99.42 | |
TextCNN+Focal Loss+位置编码 | 94.21 | 71.05 | 69.12 | 70.00 | 94.13 | 94.21 | 94.21 | 94.21 | 99.52 | |
TextCNN+Focal Loss+位置编码+GAP | 95.17 | 71.65 | 71.17 | 71.38 | 94.32 | 95.17 | 95.17 | 95.17 | 99.38 | |
联合建模 | CCHA-Net | 99.57 | 74.75 | 74.62 | 74.68 | 99.45 | 99.57 | 99.57 | 99.57 | 99.89 |
Tab. 3 Test results of ablation experiments
类型 | 模型 | Acc | Macro_P | Macro_R | Macro_F1 | Macro_AUC | Micro_P | Micro_R | Micro_F1 | Micro_AUC |
---|---|---|---|---|---|---|---|---|---|---|
犯罪事实 语义建模 | HAN | 90.45 | 64.72 | 67.87 | 66.05 | 86.89 | 90.45 | 90.45 | 90.45 | 97.40 |
HAN+Focal Loss | 91.52 | 67.68 | 69.70 | 68.61 | 88.77 | 91.52 | 91.52 | 91.52 | 98.72 | |
HAN+Focal Loss+位置编码 | 92.60 | 67.74 | 68.87 | 68.27 | 94.48 | 92.60 | 92.60 | 92.60 | 98.88 | |
HAN+Focal Loss+位置编码+显著向量 | 96.57 | 71.82 | 72.14 | 71.96 | 97.88 | 96.57 | 96.57 | 96.57 | 99.61 | |
HAN+Focal Loss+位置编码+ 显著向量+GAP | 97.10 | 72.69 | 71.79 | 72.21 | 98.09 | 97.10 | 97.10 | 97.10 | 99.51 | |
犯罪基本 情况语义 建模 | TextCNN | 92.60 | 69.33 | 68.62 | 68.96 | 85.52 | 92.60 | 92.60 | 92.60 | 99.10 |
TextCNN+Focal Loss | 93.45 | 70.92 | 69.81 | 70.30 | 89.48 | 93.45 | 93.45 | 93.45 | 99.42 | |
TextCNN+Focal Loss+位置编码 | 94.21 | 71.05 | 69.12 | 70.00 | 94.13 | 94.21 | 94.21 | 94.21 | 99.52 | |
TextCNN+Focal Loss+位置编码+GAP | 95.17 | 71.65 | 71.17 | 71.38 | 94.32 | 95.17 | 95.17 | 95.17 | 99.38 | |
联合建模 | CCHA-Net | 99.57 | 74.75 | 74.62 | 74.68 | 99.45 | 99.57 | 99.57 | 99.57 | 99.89 |
类型 | 模型 | Acc | Macro_P | Macro_R | Macro_F1 | Macro_AUC | Micro_P | Micro_R | Micro_F1 | Micro_AUC |
---|---|---|---|---|---|---|---|---|---|---|
传统机器 学习模型 | KNN | 83.49 | 66.31 | 58.16 | 60.94 | 80.92 | 83.49 | 83.49 | 83.49 | 94.50 |
MNB | 90.46 | 69.88 | 65.02 | 66.93 | 88.46 | 90.46 | 90.46 | 90.46 | 98.69 | |
GNB | 81.41 | 92.72 | ||||||||
BNB | 89.39 | 69.74 | 58.18 | 60.88 | 86.96 | 89.39 | 89.39 | 89.39 | 98.56 | |
DT | 88.32 | 67.80 | 64.47 | 65.89 | 88.32 | 88.32 | 88.32 | |||
RF | 90.35 | 69.76 | 66.48 | 67.85 | 92.32 | 90.35 | 90.35 | 90.35 | 98.80 | |
SVM | 95.28 | 72.16 | 71.53 | 71.79 | 90.15 | 95.28 | 95.28 | 95.28 | 99.50 | |
XGBoost | 93.78 | 71.06 | 65.87 | 67.83 | 81.41 | 93.78 | 93.78 | 93.78 | 98.77 | |
LR | 95.18 | 72.32 | 71.24 | 71.72 | 93.11 | 95.18 | 95.18 | 95.18 | 99.51 | |
深度学习 模型 | LSTM | 86.71 | ||||||||
Bi-LSTM | 85.41 | 59.09 | 63.55 | 60.40 | 81.35 | 85.41 | 85.41 | 85.41 | 94.89 | |
GRU | 88.84 | 62.28 | 65.13 | 63.46 | 88.84 | 88.84 | 88.84 | 96.84 | ||
Bi-GRU | 91.31 | 65.41 | 64.62 | 64.95 | 92.93 | 91.31 | 91.31 | 91.31 | 96.84 | |
Att-BiLSTM | 92.17 | 69.77 | 70.02 | 69.77 | 85.71 | 92.17 | 92.17 | 92.17 | 98.27 | |
C-LSTM | 93.78 | 71.38 | 70.47 | 70.82 | 81.36 | 93.78 | 93.78 | 93.78 | 98.34 | |
CNN-BiLSTM | 94.53 | 72.02 | 71.09 | 71.45 | 89.81 | 94.53 | 94.53 | 94.53 | 98.40 | |
AC-BiLSTM | 95.49 | 71.60 | 71.57 | 93.86 | 95.49 | 95.49 | 95.49 | 99.15 | ||
本文模型 | CCHA-Net | 99.57 | 74.75 | 74.62 | 74.68 | 99.45 | 99.57 | 99.57 | 99.57 | 99.89 |
Tab. 4 Test results of comparative experiments
类型 | 模型 | Acc | Macro_P | Macro_R | Macro_F1 | Macro_AUC | Micro_P | Micro_R | Micro_F1 | Micro_AUC |
---|---|---|---|---|---|---|---|---|---|---|
传统机器 学习模型 | KNN | 83.49 | 66.31 | 58.16 | 60.94 | 80.92 | 83.49 | 83.49 | 83.49 | 94.50 |
MNB | 90.46 | 69.88 | 65.02 | 66.93 | 88.46 | 90.46 | 90.46 | 90.46 | 98.69 | |
GNB | 81.41 | 92.72 | ||||||||
BNB | 89.39 | 69.74 | 58.18 | 60.88 | 86.96 | 89.39 | 89.39 | 89.39 | 98.56 | |
DT | 88.32 | 67.80 | 64.47 | 65.89 | 88.32 | 88.32 | 88.32 | |||
RF | 90.35 | 69.76 | 66.48 | 67.85 | 92.32 | 90.35 | 90.35 | 90.35 | 98.80 | |
SVM | 95.28 | 72.16 | 71.53 | 71.79 | 90.15 | 95.28 | 95.28 | 95.28 | 99.50 | |
XGBoost | 93.78 | 71.06 | 65.87 | 67.83 | 81.41 | 93.78 | 93.78 | 93.78 | 98.77 | |
LR | 95.18 | 72.32 | 71.24 | 71.72 | 93.11 | 95.18 | 95.18 | 95.18 | 99.51 | |
深度学习 模型 | LSTM | 86.71 | ||||||||
Bi-LSTM | 85.41 | 59.09 | 63.55 | 60.40 | 81.35 | 85.41 | 85.41 | 85.41 | 94.89 | |
GRU | 88.84 | 62.28 | 65.13 | 63.46 | 88.84 | 88.84 | 88.84 | 96.84 | ||
Bi-GRU | 91.31 | 65.41 | 64.62 | 64.95 | 92.93 | 91.31 | 91.31 | 91.31 | 96.84 | |
Att-BiLSTM | 92.17 | 69.77 | 70.02 | 69.77 | 85.71 | 92.17 | 92.17 | 92.17 | 98.27 | |
C-LSTM | 93.78 | 71.38 | 70.47 | 70.82 | 81.36 | 93.78 | 93.78 | 93.78 | 98.34 | |
CNN-BiLSTM | 94.53 | 72.02 | 71.09 | 71.45 | 89.81 | 94.53 | 94.53 | 94.53 | 98.40 | |
AC-BiLSTM | 95.49 | 71.60 | 71.57 | 93.86 | 95.49 | 95.49 | 95.49 | 99.15 | ||
本文模型 | CCHA-Net | 99.57 | 74.75 | 74.62 | 74.68 | 99.45 | 99.57 | 99.57 | 99.57 | 99.89 |
模型 | 浮点运算量/FLOPs | 参数量/103 |
---|---|---|
TextCNN通道 | 3.506 | 196.992 |
HAN通道 | 41.410 | 62.208 |
CCHA-Net | 44.916 | 259.200 |
Tab. 5 Complexity evaluation results of dual-channel processing method
模型 | 浮点运算量/FLOPs | 参数量/103 |
---|---|---|
TextCNN通道 | 3.506 | 196.992 |
HAN通道 | 41.410 | 62.208 |
CCHA-Net | 44.916 | 259.200 |
1 | WARD T, DURRANT R, DIXON L. The classification of crime: towards pluralism[J]. Aggression and Violent Behavior, 2020, 59: 10474. 10.1016/j.avb.2020.101474 |
2 | WARD T, CAETER E. The classification of offending and crime related problems: a functional perspective[J]. Psychology, Crime & Law, 2019, 25(6): 542-560. 10.1080/1068316x.2018.1557182 |
3 | MO C-Y, JIN J, JIN P. Relationship between teachers’ teaching modes and students’ temperament and learning motivation in confucian culture during the COVID-19 pandemic[J]. Frontiers in Psychology, 2022, 13: 865445. 10.3389/fpsyg.2022.865445 |
4 | BOJANOWSKA A, ZALEWSKA A M. Happy temperament? four types of stimulation control linked to four types of subjective well-being[J]. Journal of Happiness Studies: An Interdisciplinary Forum on Subjective Well-Being, 2017, 18(5): 1403-1423. 10.1007/s10902-016-9777-2 |
5 | DELISI M, VAUGHN M G. Foundation for a temperament-based theory of antisocial behavior and criminal justice system involvement[J]. Journal of Criminal Justice, 2014, 42(1):10-25. 10.1016/j.jcrimjus.2013.11.001 |
6 | 马皑, 宋业臻. 情感计算技术如何推动犯罪风险评估工具的发展?[J]. 心理科学, 2021, 44(1): 52-59. |
MA A, SONG Y Z. How does emotional computing technology promote the development of crime risk assessment tools? [J]. Journal of Psychological Science, 2021, 44(1): 52-59. | |
7 | 马皑, 孙晓, 宋业臻. 犯罪危险性智能化评估的理论与实践[M]. 北京: 中国法制出版社, 2020: 36-50. |
MA A, SUN X, SONG Y Z. Theory and Practice of Intelligent Assessment of Criminal Dangerousness[M]. Beijing: China Legal Publishing House, 2020: 36-50. | |
8 | MALHOTRA A, JINDAL R. Deep learning techniques for suicide and depression detection from online social media: a scoping review[J]. Applied Soft Computing, 2022, 130: 109713. 10.1016/j.asoc.2022.109713 |
9 | MAHAJAN R, MAHAJAN R, SHARMA E, et al. “Are we tweeting our real selves?” personality prediction of Indian Twitter users using deep learning ensemble model[J]. Computers in Human Behavior, 2022, 128: 107101. 10.1016/j.chb.2021.107101 |
10 | ZHANG N, TAN Y-A, YANG C, et al. Deep learning feature exploration for Android malware detection[J]. Applied Soft Computing, 2021, 102: 107069. 10.1016/j.asoc.2020.107069 |
11 | QUOC TRAN K, TRONG NGUYEN A, HOANG P G, et al. Vietnamese hate and offensive detection using PhoBERT-CNN and social media streaming data[J]. Neural Computing and Applications, 2023, 35: 573-594. 10.1007/s00521-022-07745-w |
12 | 孙新, 唐正, 赵永妍, 等. 基于层次混合注意力机制的文本分类模型[J]. 中文信息学报, 2021, 35(2): 69-77. 10.3969/j.issn.1003-0077.2021.02.007 |
SUN X, TANG Z, ZHAO Y Y, et al. Hierarchical networks with mixed attention for text classification[J]. Journal of Chinese Information Processing, 2021, 35(2): 69-77. 10.3969/j.issn.1003-0077.2021.02.007 | |
13 | MUMCUOĞLU E, ÖZTÜRK C E, OZAKTAS H M, et al. Natural language processing in law: prediction of outcomes in the higher courts of Turkey[J]. Information Processing & Management, 2021, 58(5):102684. 10.1016/j.ipm.2021.102684 |
14 | AHMAD S, ASGHAR M Z, ALOTAIBI F M, et al. A hybrid CNN+ BILSTM deep learning-based DSS for efficient prediction of judicial case decisions[J]. Expert Systems with Applications, 2022, 209: 118318. 10.1016/j.eswa.2022.118318 |
15 | NI Y, BARZMAN D, BACHTEL A, et al. Finding warning markers: leveraging natural language processing and machine learning technologies to detect risk of school violence[J]. International Journal of Medical Informatics, 2020, 139: 104137. 10.1016/j.ijmedinf.2020.104137 |
16 | KALCHBRENNER N, GREFENSTETTE E, BLUNSOM P. A convolutional neural network for modelling sentences [C]// Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Stroudsburg: ACL, 2014: 655-665. 10.3115/v1/p14-1062 |
17 | ZAREMBA W, SUTSKEVER I, VINYALS O. Recurrent neural network regularization [EB/OL]. (2015-02-19) [2022-03-10]. . 10.48550/arXiv.1409.2329 |
18 | 罗浩然,杨青.基于情感词典和堆叠残差的双向长短期记忆网络的情感分析[J].计算机应用,2022,42(4): 1099-1107. 10.11772/j.issn.1001-9081.2021071179 |
LUO H R, YANG Q. Sentiment analysis based on sentiment lexicon and stacked residual Bi-LSTM network[J]. Journal of Computer Applications, 2022, 42(4): 1199-1107. 10.11772/j.issn.1001-9081.2021071179 | |
19 | YANG Z, YANG D, DYER C, et al. Hierarchical attention networks for document classification [C]// Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. San Diego: NAACL, 2016: 1480-1489. 10.18653/v1/n16-1174 |
20 | M-S BAEK, PARK W, PARK J, et al. Smart policing technique with crime type and risk score prediction based on machine learning for early awareness of risk situation[J]. IEEE Access, 2021, 9: 131906-131915. 10.1109/access.2021.3112682 |
21 | SADIQ S, MEHMOOD A, ULLAH S, et al. Aggression detection through deep neural model on twitter[J]. Future Generation Computer Systems, 2021, 114: 120-129. 10.1016/j.future.2020.07.050 |
22 | VASWANI A, SHAZEER N, PARMER N, et al. Attention is all you need [EB/OL]. (2017-12-16) [2022-03-12]. . |
23 | LIN T-Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection [EB/OL]. (2018-02-07) [2022-06-10]. . 10.1109/iccv.2017.324 |
24 | COVER T, HART P. Nearest neighbor pattern classification[J]. IEEE Transactions on Information Theory, 1967, 13(1): 21-27. 10.1109/tit.1967.1053964 |
25 | NIGAM K, McCALLUM A K, THRUN S, et al. Text classification from labeled and unlabeled documents using EM[J]. Machine Learning, 2000, 39: 103-134. 10.1023/a:1007692713085 |
26 | MCCALLUM A, NIGAM K. A comparison of event models for naive Bayes text classification [C]// Proceedings of the 1998 AAAI/ICML Workshop on Learning for Text Categorization. Menlo Park: AAAI Press, 1998: 41-48. |
27 | PONTE J M, CROFT W B. A language modeling approach to information retrieval [C]// Proceedings of the 21st Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 1998: 275-281. 10.1145/290941.291008 |
28 | QUINLAN J R. Induction of decision trees[J]. Machine Learning, 1986, 1: 81-106. 10.1007/bf00116251 |
29 | HO T K. Random decision forests [C]// Proceedings of 3rd International Conference on Document Analysis and Recognition. Piscataway: IEEE, 1995, 1: 278-282. 10.1109/icdar.1995.598929 |
30 | CORTE C, VAPNIK V. Support-vector networks[J]. Machine Learning, 1995, 20: 273-297. 10.1007/bf00994018 |
31 | CHEN T, GUESTRIN C. XGBoost: a scalable tree boosting system [C]// Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2016: 785-794. 10.1145/2939672.2939785 |
32 | HOSMER D W, Jr, LEMESHOW S, STURDIVANT R X. Applied Logistic Regression[M]. Hoboken: John Wiley & Sons, 2013: 398. 10.1002/9781118548387 |
33 | HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural Computation, 1997, 9(8): 1735-1780. 10.1162/neco.1997.9.8.1735 |
34 | SCHUSTER M, PALIWAL K K. Bidirectional recurrent neural networks[J]. IEEE Transactions on Signal Processing, 1997, 45(11): 2673-2681. 10.1109/78.650093 |
35 | CHO K, VAN MERRIËNBOER B, GULCEHRE C, et al. Learning phrase representations using RNN encoder-decoder for statistical machine translation [C]// Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing. Stroudsberg: ACL, 2014: 1724-1734. 10.3115/v1/d14-1179 |
36 | CHUNG J, GULCEHRE C, CHO K, et al. Empirical evaluation of gated recurrent neural networks on sequence modeling [EB/OL]. (2014-12-11)[2022-09-10].. 10.1007/978-3-030-89929-5_3 |
37 | ZHOU P, SHI W, TIAN J, et al. Attention-based bidirectional long short-term memory networks for relation classification [C]// Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers). Stroudsberg: ACL, 2016: 207-212. 10.18653/v1/p16-2034 |
38 | ZHOU C, SUN C, LIU Z, et al. A C-LSTM neural network for text classification [EB/OL]. (2015-11-27) [2022-09-26]. . |
39 | LIU G, GUO J. Bidirectional LSTM with attention mechanism and convolutional layer for text classification[J]. Neurocomputing, 2019, 337: 325-338. 10.1016/j.neucom.2019.01.078 |
[1] | Yunchuan HUANG, Yongquan JIANG, Juntao HUANG, Yan YANG. Molecular toxicity prediction based on meta graph isomorphism network [J]. Journal of Computer Applications, 2024, 44(9): 2964-2969. |
[2] | Jing QIN, Zhiguang QIN, Fali LI, Yueheng PENG. Diagnosis of major depressive disorder based on probabilistic sparse self-attention neural network [J]. Journal of Computer Applications, 2024, 44(9): 2970-2974. |
[3] | Xiyuan WANG, Zhancheng ZHANG, Shaokang XU, Baocheng ZHANG, Xiaoqing LUO, Fuyuan HU. Unsupervised cross-domain transfer network for 3D/2D registration in surgical navigation [J]. Journal of Computer Applications, 2024, 44(9): 2911-2918. |
[4] | Shunyong LI, Shiyi LI, Rui XU, Xingwang ZHAO. Incomplete multi-view clustering algorithm based on self-attention fusion [J]. Journal of Computer Applications, 2024, 44(9): 2696-2703. |
[5] | Yexin PAN, Zhe YANG. Optimization model for small object detection based on multi-level feature bidirectional fusion [J]. Journal of Computer Applications, 2024, 44(9): 2871-2877. |
[6] | Yun LI, Fuyou WANG, Peiguang JING, Su WANG, Ao XIAO. Uncertainty-based frame associated short video event detection method [J]. Journal of Computer Applications, 2024, 44(9): 2903-2910. |
[7] | Hong CHEN, Bing QI, Haibo JIN, Cong WU, Li’ang ZHANG. Class-imbalanced traffic abnormal detection based on 1D-CNN and BiGRU [J]. Journal of Computer Applications, 2024, 44(8): 2493-2499. |
[8] | Yuhan LIU, Genlin JI, Hongping ZHANG. Video pedestrian anomaly detection method based on skeleton graph and mixed attention [J]. Journal of Computer Applications, 2024, 44(8): 2551-2557. |
[9] | Yanjie GU, Yingjun ZHANG, Xiaoqian LIU, Wei ZHOU, Wei SUN. Traffic flow forecasting via spatial-temporal multi-graph fusion [J]. Journal of Computer Applications, 2024, 44(8): 2618-2625. |
[10] | Qianhong SHI, Yan YANG, Yongquan JIANG, Xiaocao OUYANG, Wubo FAN, Qiang CHEN, Tao JIANG, Yuan LI. Multi-granularity abrupt change fitting network for air quality prediction [J]. Journal of Computer Applications, 2024, 44(8): 2643-2650. |
[11] | Yiqun ZHAO, Zhiyu ZHANG, Xue DONG. Anisotropic travel time computation method based on dense residual connection physical information neural networks [J]. Journal of Computer Applications, 2024, 44(7): 2310-2318. |
[12] | Yangyi GAO, Tao LEI, Xiaogang DU, Suiyong LI, Yingbo WANG, Chongdan MIN. Crowd counting and locating method based on pixel distance map and four-dimensional dynamic convolutional network [J]. Journal of Computer Applications, 2024, 44(7): 2233-2242. |
[13] | Song XU, Wenbo ZHANG, Yifan WANG. Lightweight video salient object detection network based on spatiotemporal information [J]. Journal of Computer Applications, 2024, 44(7): 2192-2199. |
[14] | Xun SUN, Ruifeng FENG, Yanru CHEN. Monocular 3D object detection method integrating depth and instance segmentation [J]. Journal of Computer Applications, 2024, 44(7): 2208-2215. |
[15] | Zheng WU, Zhiyou CHENG, Zhentian WANG, Chuanjian WANG, Sheng WANG, Hui XU. Deep learning-based classification of head movement amplitude during patient anaesthesia resuscitation [J]. Journal of Computer Applications, 2024, 44(7): 2258-2263. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||