1 WU K , ZHANG K , FAN W , et al . RS-Forest: a rapid density estimator for streaming anomaly detection[C]// Proceedings of the 2014 IEEE International Conference on Data Mining. Piscataway: IEEE, 2014:600-609.
2 SUN D , HU Y , SHI Z , et al . An efficient anomaly detection framework for electromagnetic streaming data[C]// Proceedings of the 4th International Conference on Big Data and Computing. New York: ACM, 2019:151-155.
3 DING Z , FEI M . An anomaly detection approach based on isolation forest algorithm for streaming data using sliding window[J]. IFAC Proceedings Volumes, 2013, 46(20):12-17.
4 GUPTA M , GAO J , AGGARWAL C C , et al . Outlier detection for temporal data: a survey[J]. IEEE Transactions on Knowledge and Data Engineering, 2014, 26(9):2250-2267.
5 THAKKAR P , VALA J , PRAJAPATI V . Survey on outlier detection in data stream[J]. International Journal of Computer Applications, 2016, 136(2):13-16.
6 LI X , HAN J . Mining approximate top-k subspace anomalies in multi-dimensional time-series data[EB/OL].[2019-05-20]. https:// pdfs.semanticscholar.org/fe68/274342529b66baa0f38e026b607b-63faba9c.pdf.
7 SOLBERG H E , LAHTI A . Detection of outliers in reference distributions: performance of Horn’s algorithm[J]. Clinical Chemistry, 2005, 51(12):2326-2332.
8 李春生,于澍,刘小刚 . 基于改进距离和的异常点检测算法研究[J].计算机技术与发展, 2019, 29(3):97-100. (LI C S, YU S, LIU X G. Research on outlier detection algorithm based on improved distance [J]. Computer Technology and Development, 2019, 29(3):97-100.)
9 蒋华,张红福,罗一迪,等 . 基于KL距离的自适应阈值网络流量异常检测[J]. 计算机工程, 2019, 45(4):108-113, 118. JIANG H , ZHANG H F , LUO Y D , et al . Adaptive threshold network traffic anomaly detection based on KL distance[J]. Computer Engineering, 2019, 45(4): 108-113, 118.
10 JIN W , TUNG A K H , HAN J , et al . Ranking outliers using symmetric neighborhood relationship [C]// Proceedings of the 2006 Pacific-Asia Conference on Knowledge Discovery and Data Mining, LNCS 3918. Berlin: Springer, 2006: 577-593.
11 阮嘉琨,蔡延光,乐冰 . 基于DBSCAN密度聚类算法的高速公路交通流异常数据检测[J]. 工业控制计算机, 2019, 32(7):92-94. (RUAN J K, CAI Y G, LE B. Highway traffic anomaly data detection based on DBSCAN density clustering algorithm[J]. Industrial Control Computer, 2019, 32(7):92-94.)
12 PAN X , TAN J , KAVULYA S , et al . GaneSHA: black-Box diagnosis of MapReduce systems[J]. ACM SIGMETRICS Performance Evaluation Review, 2010, 37(3):8-13.
13 GUPTA M , SHARMA A B , CHEN H , et al . Context-aware time series anomaly detection for complex systems[EB/OL].[2019-05-20]. https://www.microsoft.com/en-us/research/wp-content/uploads/2013/01/gupta13_sdma.pdf.
14 CHANDOLA V , MITHAL V , KUMAR V . Comparative evaluation of anomaly detection techniques for sequence data[C]// Proceedings of the 8th IEEE International Conference on Data Mining. Piscataway: IEEE, 2008:743-748.
15 SUN P , CHAWLA S , ARUNASALAM . Mining for outliers in sequential databases[EB/OL].[2019-05-20].https://archive.siam.org/meetings/sdm06/proceedings/009sunp.pdf.
16 CHEN P Y , YANG S , MCCANN J A . Distributed real-time anomaly detection in networked industrial sensing systems[J]. IEEE Transactions on Industrial Electronics, 2015, 62(6):3832-3842.
17 FARIA E R , GAMA J , CARVALHO A C P L F . Novelty detection algorithm for data streams multi-class problems[C]// Proceedings of the 28th Annual ACM Symposium on Applied Computing. New York: ACM, 2013:795-800.
18 YU Y , GUO S , LAN S , et al . Anomaly intrusion detection for evolving data stream based on semi-supervised learning[C]// Proceedings of the 15th International Conference on Neural Information Processing, LNCS 5506. Berlin: Springer, 2008:571-578.
19 AHMAD S , LAVIN A , PURDY S , et al . Unsupervised real-time anomaly detection for streaming data[J]. Neurocomputing, 2017, 262: 134-147.
20 SZMIT M , SZMIT A . Use of holt-winters method in the analysis of network traffic: case study[C]// Proceedings of the 2011 International Conference on Computer Networks, CCIS 160. Berlin: Springer, 2011:224-231.
21 BASSEVILLE M , NIKIFOROV I V . Detection of Abrupt Change Theory and Application[M]. Upper Saddle River: Prentice Hall, 1993: 23-26.
22 BIANCO A M , BEN M G, MARTíNEZ E J , et al . Outlier detection in regression models with ARIMA errors using robust estimates[J]. Journal of Forecasting, 2001, 20(8):565-579.
23 GREFF K , SRIVASTAVA R K , KOUTNíK J , et al . LSTM: a search space odyssey[J]. IEEE Transactions on Neural Networks and Learning Systems, 2017, 28(10):2222-2232.
24 Machine Learning Repository UCI . Condition monitoring of hydraulic systems[DB/OL]. [2019-07-20] http://archive.ics.uci.edu/ml/datasets/Condition+monitoring+of+hydraulic+systems.
25 ZHANG Y , SZABO C , SHENG Q Z . Cleaning environmental sensing data streams based on individual sensor reliability[C]// Proceedings of the 2014 International Conference on Web Information Systems Engineering, LNCS 8787. Cham: Springer, 2014: 405- 414.
26 ZIMEK A , CAMPELLO R J G B , SANDER J . Ensembles for unsupervised outlier detection: challenges and research questions a position paper[J]. ACM SIGKDD Explorations Newsletter, 2014,15(1):11-22. |