[1] 邓忠豪, 陈晓东. 基于深度卷积神经网络的肺结节检测算法[J]. 计算机应用,2019,39(7):2109-2115.(DENG Z H,CHEN X D. Pulmonary nodule detection algorithm based on deep convolutional neural network[J]. Journal of Computer Applications,2019,39(7):2109-2115.) [2] 高智勇, 万昕. 基于深度学习的肺结节识别[J]. 中南民族大学学报(自然科学版),2019,38(3):393-396.(GAO Z Y,WAN X. Recognition of pulmonary nodule based on deep learning[J]. Journal of South-Central University for Nationalities (Natural Science Edition),2019,38(3):393-396.) [3] MURPHY K,VAN GINNEKEN B,SCHILHAM A M R,et al. A large-scale evaluation of automatic pulmonary nodule detection in chest CT using local image features and k-nearest-neighbour classification[J]. Medical Image Analysis, 2009, 13(5):757-770. [4] 唐思源, 刘燕茹, 杨敏, 等. 基于CT图像的肺结节检测与识别[J]. 中国医学物理学杂志,2019,36(7):800-807.(TANG S Y, LIU Y R,YANG M,et al. Detection and recognition of pulmonary nodules based on CT images[J]. Chinese Journal of Medical Physics,2019,36(7):800-807.) [5] 朱辉, 秦品乐. 基于多尺度特征结构的U-Net肺结节检测算法[J]. 计算机工程,2019,45(4):254-261.(ZHU H,QIN P L. UNet pulmonary nodule detection algorithm based on multi-scale feature structure[J]. Computer Engineering, 2019, 45(4):254-261.) [6] 庞浩. 基于深度卷积神经网络的医学影像诊断关键技术研究[D]. 北京:北京邮电大学,2019:10-15.(PANG H. Research on key techniques of medical image diagnosis based on deep convolution neural network[D]. Beijing:Beijing University of Posts and Telecommunications,2019:10-15.) [7] REN S,HE K,GIRSCHICK R,et al. Faster R-CNN:towards realtime object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2017, 39(6):1137-1149. [8] XIE H,YANG D,SUN N,et al. Automated pulmonary nodule detection in CT images using deep convolutional neural networks[J]. Pattern Recognition,2019,85:109-119. [9] DING J,LI A,HU Z,et al. Accurate pulmonary nodule detection in computed tomography images using deep convolutional neural networks[C]//Proceedings of the 2017 International Conference on Medical Image Computing and Computer-Assisted Intervention, LNCS 10435. Cham:Springer,2017:559-567. [10] LIN T Y,DOLLÁR P,GIRSHICK R,et al. Feature pyramid networks for object detection[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2017:936-944. [11] LIN T Y,GOVAL P,GIRSHICK R,et al. Focal loss for dense object detection[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway:IEEE,2017:2999-3007. [12] CHEN L C,PAPANDREOU G,KOKKINOS I,et al. DeepLab:semantic image segmentation with deep convolutional nets,atrous convolution,and fully connected CRFs[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(4):834-848. [13] SETIO A A A,TRAVERSO A,DE BEL T,et al. Validation, comparison,and combination of algorithms for automatic detection of pulmonary nodules in computed tomography images:the LUNA16 challenge[J]. Medical Image Analysis,2017,42:1-13. [14] LIAO F,LIANG M,LI Z,et al. Evaluate the malignancy of pulmonary nodules using the 3-D deep leaky noisy-or network[J]. IEEE Transactions on Neural Networks and Learning Systems, 2019,30(11):3484-3495. [15] LI C,ZHU G,WU X,et al. False-positive reduction on lung nodules detection in chest radiographs by ensemble of convolutional neural networks[J]. IEEE Access,2018,6:16060-16067. |