Journal of Computer Applications ›› 2024, Vol. 44 ›› Issue (7): 2102-2109.DOI: 10.11772/j.issn.1001-9081.2023070919
• Cyber security • Previous Articles Next Articles
Li LIU(), Haijin HOU, Anhong WANG, Tao ZHANG
Received:
2023-07-11
Revised:
2023-09-14
Accepted:
2023-09-19
Online:
2023-10-26
Published:
2024-07-10
Contact:
Li LIU
About author:
HOU Haijin, born in 1997. M. S. candidate. His research interests include information hiding.Supported by:
通讯作者:
刘丽
作者简介:
侯海金(1997—),男,山西晋中人,硕士研究生,主要研究方向:信息隐藏;基金资助:
CLC Number:
Li LIU, Haijin HOU, Anhong WANG, Tao ZHANG. Generative data hiding algorithm based on multi-scale attention[J]. Journal of Computer Applications, 2024, 44(7): 2102-2109.
刘丽, 侯海金, 王安红, 张涛. 基于多尺度注意力的生成式信息隐藏算法[J]. 《计算机应用》唯一官方网站, 2024, 44(7): 2102-2109.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2023070919
层号 | 输出大小 | 卷积核大小 | 操作 | 层号 | 输出大小 | 卷积核大小 | 操作 |
---|---|---|---|---|---|---|---|
1 | 256×256×3 | — | — | 8 | 16×16×512 | 4×4 | Self Atten_concat_Deconv_BN_LeakyReLU |
2 | 256×256×64 | 5×5 | Conv_BN_LeakyReLU | 9 | 32×32×512 | 4×4 | Self Atten_concat_Deconv_BN_LeakyReLU |
3 | 128×128×128 | 4×4 | Conv_BN_LeakyReLU | 10 | 64×64×256 | 4×4 | Self Atten_concat_Deconv_BN_LeakyReLU |
4 | 64×64×256 | 4×4 | Conv_BN_LeakyReLU | 11 | 128×128×128 | 4×4 | concat_Deconv_BN_LeakyReLU |
5 | 32×32×512 | 4×4 | Conv_BN_LeakyReLU | 12 | 256×256×64 | 4×4 | concat_Deconv_BN_LeakyReLU |
6 | 16×16×512 | 4×4 | Conv_BN_LeakyReLU | 13 | 256×256×3 | 5×5 | Deconv_Sigmoid |
7 | 8×8×512 | 4×4 | Conv_BN_LeakyReLU |
Tab. 1 Parameter list of extractor
层号 | 输出大小 | 卷积核大小 | 操作 | 层号 | 输出大小 | 卷积核大小 | 操作 |
---|---|---|---|---|---|---|---|
1 | 256×256×3 | — | — | 8 | 16×16×512 | 4×4 | Self Atten_concat_Deconv_BN_LeakyReLU |
2 | 256×256×64 | 5×5 | Conv_BN_LeakyReLU | 9 | 32×32×512 | 4×4 | Self Atten_concat_Deconv_BN_LeakyReLU |
3 | 128×128×128 | 4×4 | Conv_BN_LeakyReLU | 10 | 64×64×256 | 4×4 | Self Atten_concat_Deconv_BN_LeakyReLU |
4 | 64×64×256 | 4×4 | Conv_BN_LeakyReLU | 11 | 128×128×128 | 4×4 | concat_Deconv_BN_LeakyReLU |
5 | 32×32×512 | 4×4 | Conv_BN_LeakyReLU | 12 | 256×256×64 | 4×4 | concat_Deconv_BN_LeakyReLU |
6 | 16×16×512 | 4×4 | Conv_BN_LeakyReLU | 13 | 256×256×3 | 5×5 | Deconv_Sigmoid |
7 | 8×8×512 | 4×4 | Conv_BN_LeakyReLU |
算法 | 载体图像/载密图像 | |
---|---|---|
PSNR/dB | SSIM | |
Yu算法[ | 33.50 | 0.964 5 |
Ying算法[ | 33.94 | 0.951 7 |
HiDDeN算法 | 37.24 | 0.979 1 |
本文算法 | 40.93 | 0.988 3 |
Tab. 2 Comparison of image hiding effects using different algorithms in COCO dataset
算法 | 载体图像/载密图像 | |
---|---|---|
PSNR/dB | SSIM | |
Yu算法[ | 33.50 | 0.964 5 |
Ying算法[ | 33.94 | 0.951 7 |
HiDDeN算法 | 37.24 | 0.979 1 |
本文算法 | 40.93 | 0.988 3 |
网络结构 | 载体图像/载密图像 | |||
---|---|---|---|---|
PSNR/dB | SSIM | MAE | RMSE | |
Base | 35.75 | 0.985 4 | 0.013 | 0.016 |
Base+MSA | 37.93 | 0.989 0 | 0.010 | 0.013 |
Base+MSA+A | 40.93 | 0.998 3 | 0.007 | 0.009 |
Tab. 3 Effects of ablation experiments on stego-images
网络结构 | 载体图像/载密图像 | |||
---|---|---|---|---|
PSNR/dB | SSIM | MAE | RMSE | |
Base | 35.75 | 0.985 4 | 0.013 | 0.016 |
Base+MSA | 37.93 | 0.989 0 | 0.010 | 0.013 |
Base+MSA+A | 40.93 | 0.998 3 | 0.007 | 0.009 |
网络结构 | 秘密图像/提取的秘密图像 | |||
---|---|---|---|---|
PSNR/dB | SSIM | MAE | RMSE | |
Base | 18.80 | 0.803 7 | 0.102 | 0.126 |
Base+MSA | 26.60 | 0.944 1 | 0.045 | 0.056 |
Base+MSA+A | 30.47 | 0.954 3 | 0.035 | 0.044 |
Tab. 4 Effects of ablation experiments on extracted secret images
网络结构 | 秘密图像/提取的秘密图像 | |||
---|---|---|---|---|
PSNR/dB | SSIM | MAE | RMSE | |
Base | 18.80 | 0.803 7 | 0.102 | 0.126 |
Base+MSA | 26.60 | 0.944 1 | 0.045 | 0.056 |
Base+MSA+A | 30.47 | 0.954 3 | 0.035 | 0.044 |
1 | 武晓帅,徐明,乔通,等.图像空域可逆信息隐藏研究进展[J].中国图象图形学报, 2022, 27(1): 125-149. |
WU X S, XU M, QIAO T, et al. Review of reversible data hiding based on the spatial domain of images [J]. Journal of Image and Graphics, 2022, 27(1): 125-149. | |
2 | 付章杰,李恩露,程旭,等.基于深度学习的图像隐写研究进展[J].计算机研究与发展, 2021, 58(3): 548-568. |
FU Z J, LI E L, CHENG X, et al. Recent advances in image steganography based on deep learning [J]. Journal of Computer Research and Development, 2021, 58(3): 548-568. | |
3 | GOODFELLOW I J, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial nets [C]// Proceedings of the 27th International Conference on Neural Information Processing Systems. Cambridge: MIT Press, 2014: 2672-2680. |
4 | XIAO M, LI X, MA B, et al. Efficient reversible data hiding for jpeg images with multiple histograms modification [J]. IEEE Transactions on Circuits and Systems for Video Technology, 2021, 31(7): 2535-2546. |
5 | HE W, CAI Z, WANG Y. High-fidelity reversible image watermarking based on effective prediction error-pairs modification [J]. IEEE Transactions on Multimedia, 2021, 23: 52-63. |
6 | YU C, ZHANG X, WANG D, et al. Reversible data hiding with pairwise PEE and 2D-PEH decomposition [J]. Signal Processing, 2022, 196: 108527. |
7 | KOUHI A, SEDAAGHI M H. Prediction error distribution with dynamic asymmetry for reversible data hiding [J]. Expert Systems with Applications, 2021, 184: 115475. |
8 | TANG W, TAN S, LI B, et al. Automatic steganographic distortion learning using a generative adversarial network [J]. IEEE Signal Processing Letters, 2017, 24(10): 1547-1551. |
9 | VOLKHONSKIY D, BORISENKO B, BURNAEV E. Generative adversarial networks for image steganography [EB/OL]. [2022-06-30]. . |
10 | 王耀杰,钮可,杨晓元.基于生成对抗网络的信息隐藏方案[J].计算机应用, 2018, 38(10): 2923-2928. |
WANG Y J, NIU K, YANG X Y. Information hiding scheme based on generative adversarial network [J]. Journal of Computer Applications, 2018, 38(10): 2923-2928. | |
11 | ZHU J, KAPLAN R, JOHNSON J, et al. HiDDeN: hiding data with deep networks [C]// Proceedings of the 15th European Conference on Computer Vision. Cham: Springer, 2018: 682-697. |
12 | ZHANG H, WANG H, CAO Y, et al. Robust data hiding using inverse gradient attention [EB/OL]. [2023-07-01]. . |
13 | TAN J, LIAO X, LIU J, et al. Channel attention image steganography with generative adversarial networks [J]. IEEE Transactions on Network Science and Engineering, 2022, 9(2): 888-903. |
14 | WEI P, LI S, ZHANG X, et al. Generative steganography network [C]// Proceedings of the 30th ACM International Conference on Multimedia. New York: ACM, 2022: 1621-1629. |
15 | LIU X, MA Z, MA J, et al. Image disentanglement autoencoder for steganography without embedding [C]// Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Piscataway: IEEE, 2022: 2293-2302. |
16 | ZHOU Z, DONG X, MENG R, et al. Generative steganography via auto-generation of semantic object contours [J]. IEEE Transactions on Information Forensics and Security, 2023, 18: 2751-2765. |
17 | BALUJA S. Hiding image in plain sight: deep steganography [C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2017: 2066-2076. |
18 | ZHANG R, DONG S, LIU J. Invisible steganography via generative adversarial networks [J]. Multimedia Tools and Applications, 2019, 78(7): 8559-8575. |
19 | FU Z, WANG F, CHENG X. The secure steganography for hiding images via GAN [J]. EURASIP Journal on Image and Video Processing, 2020, 2020: No. 46. |
20 | CHEN H, SONG L, QIAN Z, et al. Hiding images in deep probabilistic models [C]// Proceedings of the 36th International Conference on Neural Information Processing Systems. New York: ACM, 2022: 36776-36788. |
21 | MENG L, JIANG X, ZHANG Z, et al. A robust coverless image steganography based on an end-to-end hash generation model [J]. IEEE Transactions on Circuits and Systems for Video Technology, 2023, 33(7): 3542-3558. |
22 | LI Q, WANG X, WANG X, et al. An encrypted coverless information hiding method based on generative models [J]. Information Sciences, 2021, 553: 19-30. |
23 | YU C. Attention based data hiding with generative adversarial networks [C]// Proceedings of the 34th AAAI Conference on Artificial Intelligence. Menlo Park: AAAI Press, 2020: 1120-1128. |
24 | ZHU J-Y, PARK T, ISOLA P, et al. Unpaired image-to-image translation using cycle-consistent adversarial networks [C]// Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2017: 2242-2251. |
25 | YING Q, ZHOU H, ZENG X, et al. Hiding images into images with real-world robustness [C]// Proceedings of the 2022 IEEE International Conference on Image Processing. Piscataway: IEEE, 2022: 111-115. |
26 | LI B, TAN S, WANG M, et al. Investigation on cost assignment in spatial image steganography [J]. IEEE Transactions on Information Forensics and Security, 2014, 9(8): 1264-1277. |
27 | BROCK A, DONAHUE J, SIMONYAN K. Large scale GAN training for high fidelity natural image synthesis [EB/OL]. [2023-07-01]. . |
28 | ASHWATH B. Kaggle [DB/OL]. [2022-06-30]. . |
29 | LIN T-Y, MAIRE M, BELONGIE S, et al. Microsoft COCO: common objects in context [C]// Proceedings of the 13th European Conference on Computer Vision. Cham: Springer, 2014: 740-755. |
[1] | Zhiqiang ZHAO, Peihong MA, Xinhong HEI. Crowd counting method based on dual attention mechanism [J]. Journal of Computer Applications, 2024, 44(9): 2886-2892. |
[2] | Jing QIN, Zhiguang QIN, Fali LI, Yueheng PENG. Diagnosis of major depressive disorder based on probabilistic sparse self-attention neural network [J]. Journal of Computer Applications, 2024, 44(9): 2970-2974. |
[3] | Yan RONG, Jiawen LIU, Xinlei LI. Adaptive hybrid network for affective computing in student classroom [J]. Journal of Computer Applications, 2024, 44(9): 2919-2930. |
[4] | Liting LI, Bei HUA, Ruozhou HE, Kuang XU. Multivariate time series prediction model based on decoupled attention mechanism [J]. Journal of Computer Applications, 2024, 44(9): 2732-2738. |
[5] | Kaipeng XUE, Tao XU, Chunjie LIAO. Multimodal sentiment analysis network with self-supervision and multi-layer cross attention [J]. Journal of Computer Applications, 2024, 44(8): 2387-2392. |
[6] | Pengqi GAO, Heming HUANG, Yonghong FAN. Fusion of coordinate and multi-head attention mechanisms for interactive speech emotion recognition [J]. Journal of Computer Applications, 2024, 44(8): 2400-2406. |
[7] | Tong CHEN, Fengyu YANG, Yu XIONG, Hong YAN, Fuxing QIU. Construction method of voiceprint library based on multi-scale frequency-channel attention fusion [J]. Journal of Computer Applications, 2024, 44(8): 2407-2413. |
[8] | Zhonghua LI, Yunqi BAI, Xuejin WANG, Leilei HUANG, Chujun LIN, Shiyu LIAO. Low illumination face detection based on image enhancement [J]. Journal of Computer Applications, 2024, 44(8): 2588-2594. |
[9] | Chenqian LI, Jun LIU. Ultrasound carotid plaque segmentation method based on semi-supervision and multi-scale cascaded attention [J]. Journal of Computer Applications, 2024, 44(8): 2604-2610. |
[10] | Shangbin MO, Wenjun WANG, Ling DONG, Shengxiang GAO, Zhengtao YU. Single-channel speech enhancement based on multi-channel information aggregation and collaborative decoding [J]. Journal of Computer Applications, 2024, 44(8): 2611-2617. |
[11] | Wei LI, Xiaorong ZHANG, Peng CHEN, Qing LI, Changqing ZHANG. Crowd counting algorithm with multi-scale fusion based on normal inverse Gamma distribution [J]. Journal of Computer Applications, 2024, 44(7): 2243-2249. |
[12] | Wu XIONG, Congjun CAO, Xuefang SONG, Yunlong SHAO, Xusheng WANG. Handwriting identification method based on multi-scale mixed domain attention mechanism [J]. Journal of Computer Applications, 2024, 44(7): 2225-2232. |
[13] | Huanhuan LI, Tianqiang HUANG, Xuemei DING, Haifeng LUO, Liqing HUANG. Public traffic demand prediction based on multi-scale spatial-temporal graph convolutional network [J]. Journal of Computer Applications, 2024, 44(7): 2065-2072. |
[14] | Dianhui MAO, Xuebo LI, Junling LIU, Denghui ZHANG, Wenjing YAN. Chinese entity and relation extraction model based on parallel heterogeneous graph and sequential attention mechanism [J]. Journal of Computer Applications, 2024, 44(7): 2018-2025. |
[15] | Song XU, Wenbo ZHANG, Yifan WANG. Lightweight video salient object detection network based on spatiotemporal information [J]. Journal of Computer Applications, 2024, 44(7): 2192-2199. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||