[1] Banner Engineering. 安瓿瓶装盒检测[EB/OL].[2020-02-29]. https://www.bannerengineering.com.cn/cn/zh/solutions/partquality-inspection/Ampoule-Bottles-Inspection.html. (Banner engineering. Ampoule bottles inspection[EB/OL].[2020-02-29]. https://www.bannerengineering.com.cn/cn/zh/solutions/partquality-inspection/Ampoule-Bottles-Inspection.html.) [2] 方文星, 王野. 一种铝塑泡罩药品包装缺陷检测方法[J]. 包装工程,2019,40(1):133-139.(FANG W X,WANG Y. Defect detection method for drug packaging with aluminum plastic bubble cap[J]. Packaging Engineering,2019,40(1):133-139.) [3] QASIM R H,AL-ANI M S. Efficient approach of detection and visualization of the damaged tablets[J]. Journal of Theoretical and Applied Information Technology,2018,96(3):643-656. [4] RAWAT W,WANG Z. Deep convolutional neural networks for image classification:a comprehensive review[J]. Neural Computation,2017,29(9):2352-2449. [5] 姚明海, 陈志浩. 基于深度主动学习的磁片表面缺陷检测[J]. 计算机测量与控制,2018,26(9):29-33.(YAO M H,CHEN Z H. Deep active learning in detection of surface defects on magnetic sheet[J]. Computer Measurement and Control,2018,26(9):29-33.) [6] 张琪, 王国栋, 赵希梅, 等. 基于轻量级卷积神经网络的肝部病理组织切片分类[J]. 青岛大学学报(自然科学版),2018,31(4):76-82.(ZHANG Q,WANG G D,ZHAO X M,et al. Classification of liver pathological tissue sections based on the lightweight convolutional neural network[J]. Journal of Qingdao University (Natural Science Edition),2018,31(4):76-82.) [7] HOWARD A G,ZHU M,CHEN B,et al. MobileNets:efficient convolutional neural networks for mobile vision applications[EB/OL].[2020-02-29]. https://arxiv.org/pdf/1704.04861.pdf. [8] SANDLER M, HOWARD A, ZHU M, et al. MobileNetv2:inverted residuals and linear bottlenecks[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2018:4510-4520. [9] HE K,ZHANG X,REN S,et al. Deep residual learning for image recognition[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2016:770-778. [10] 刘平, 陈斌, 阮波. 基于边缘信息的图像阈值化分割方法[J]. 计算机应用,2004,24(9):28-30,36.(LIU P,CHEN B,RUAN B. Image thresholding segmentation based on edge information[J]. Journal of Computer Applications, 2004, 24(9):28-30,36.) [11] GONZALEZ R C,WOODS R E. 数字图像处理[M]. 3版. 阮秋琦,阮宇智,译. 北京:电子工业出版社,2011:424-486. (GONZALEZ R C,WOODS R E. Digital Image Processing[M]. 3rd ed. RUAN Q Q,RUAN Y Z,translated. Beijing:Publishing House of Electronics Industry,2011:424-486.) [12] 纪姚林, 黄慧明. 基于边缘信息的二维Otsu阈值分割算法的改进[J]. 信息技术,2017(11):43-45,48. (JI Y L,HUANG H M. Improvement of 2-D Otsu threshold segmentation algorithm based on edge information[J]. Information Technology,2017(11):43-45,48.) [13] PyTorch. AdaptiveAvgPool2d[EB/OL].[2020-02-29]. https://pytorch.org/docs/master/generated/torch.nn. AdaptiveAvgPool2d.html#torch. nn. AdaptiveAvgPool2d. [14] IOFFE S,SZYEGEDY C. Batch normalization:accelerating deep network training by reducing internal covariate shift[C]//Proceedings of the 32nd International Conference on Machine Learning. New York:JMLR. org,2015:448-456. [15] KRIZHEVSKY A, HINTON G. Convolutional deep belief networks on CIFAR-10[EB/OL].[2020-02-29]. https://www.cs.toronto.edu/~kriz/conv-cifar10-aug2010.pdf. [16] SRIVASTAVA N, HINTON G, KRIZHEVSKY A, et al. Dropout:a simple way to prevent neural networks from overfitting[J]. Journal of Machine Learning Research,2014,15(1):1929-1958. [17] BOTTOU L. Large-scale machine learning with stochastic gradient descent[C]//Proceedings of the 19th International Conference on Computational Statistics. Heidelberg:Physica-Verlag, 2010:177-186. [18] LOSHCHILOV I, HUTTER F. Decoupled weight decay regularization[EB/OL].[2020-02-29]. https://arxiv.org/pdf/1711.05101.pdf. [19] MA N,ZHANG X,ZHENG H,et al. ShuffleNet V2:practical guidelines for efficient CNN architecture design[C]//Proceedings of the 2018 European Conference on Computer Vision,LNCS 11218. Cham:Springer,2018:122-138. [20] IANDOLA F N,HAN S,MOSKEWICZ M W,et al. SqueezeNet:AlexNet-level accuracy with 50x fewer parameters and <0.5 MB model size[EB/OL].[2020-02-29]. https://arxiv.org/pdf/1602.07360.pdf. [21] HUANG D,SHAN C,ARDABILIAN M,et al. Local binary patterns and its application to facial image analysis:a survey[J]. IEEE Transactions on Systems,Man,and Cybernetics,Part C (Applications and Reviews),2011,41(6):765-781. [22] HUANG G B,WANG D H,LAN Y. Extreme learning machines:a survey[J]. International Journal of Machine Learning and Cybernetics,2011,2(2):107-122. |