[1] 吴华意, 黄蕊, 游兰, 等. 出租车轨迹数据挖掘进展[J]. 测绘学报,2019(11):1341-1356.(WU H Y,HUANG R,YOU L,et al. Recent progress in taxi trajectory data mining[J]. Acta Geodaetica et Cartographica Sinica,2019,48(11):1341-1356.) [2] JEUNG H,YIU M L,ZHOU X,et al. Path prediction and predictive range querying in road network databases[J]. The VLDB Journal,2010,19(4):585-602. [3] ZHANG R, JAGADISH H V, DAI B T, et al. Optimized algorithms for predictive range and KNN queries on moving objects[J]. Information Systems,2010,35(8):911-932. [4] LI Y,CHOW C Y,DENG K,et al. Sampling big trajectory data[C]//Proceedings of the 24th ACM International on Conference on Information and Knowledge Management. New York:ACM,2015:941-950. [5] LI R,RUAN S,BAO J,et al. Efficient path query processing over massive trajectories on the cloud[J]. IEEE Transactions on Big Data,2020,6(1):66-79. [6] ALARABI L. ST-Hadoop:a MapReduce framework for big spatiotemporal data[C]//Proceedings of the 2017 ACM International Conference on Management of Data. New York:ACM,2017:40-42. [7] CHEN Y,CHEN Y. An efficient algorithm for answering graph reachability queries[C]//Proceedings of the IEEE 24th International Conference on Data Engineering. Piscataway:IEEE, 2008:893-902. [8] CHEN Y,CHEN Y. Decomposing DAGs into spanning trees:a new way to compress transitive closures[C]//Proceedings of the IEEE 27th International Conference on Data Engineering. Piscataway:IEEE,2011:1007-1018. [9] VAN SCHAIK S J,DE MOOR O. A memory efficient reachability data structure through bit vector compression[C]//Proceedings of the 2011 ACM SIGMOD International Conference on Management of data. New York:ACM,2011:913-924. [10] BRAMANDIA R, CHOI B, NG W K. On incremental maintenance of 2-hop labeling of graphs[C]//Proceedings of the 17th International Conference on World Wide Web. New York:ACM,2008:845-854. [11] CAI J,POON C K. Path-hop:efficiently indexing large graphs for reachability queries[C]//Proceedings of the 19th ACM International Conference on Information and Knowledge Management. New York:ACM,2010:119-128. [12] DU M,YANG A,ZHOU J,et al. HT:a novel labeling scheme for k-hop reachability queries on DAGs[J]. IEEE Access,2019, 7:172110-172122. [13] SEUFERT S,ANAND A,BEDATHUR S,et al. FERRARI:flexible and efficient reachability range assignment for graph indexing[C]//Proceedings of the IEEE 29th International Conference on Data Engineering. Piscataway:IEEE,2013:1009-1020. [14] VELOSO R R,CERF L,MEIRA W,et al. Reachability queries in very large graphs:a fast refined online search approach[C]//Proceedings of the 17th International Conference on Extending Database Technology. Berlin:Springer,2014:511-522. [15] WU H,HUANG Y,CHENG J,et al. Reachability and timebased path queries in temporal graphs[C]//Proceedings of the IEEE 32nd International Conference on Data Engineering. Piscataway:IEEE,2016:145-156. [16] ZHU A D,LIN W,WANG S,et al. Reachability queries on large dynamic graphs:a total order approach[C]//Proceedings of the 2014 ACM SIGMOD International Conference on Management of Data. New York:ACM,2014:1323-1334. [17] ANASTASIOU C,HUANG C,KIM S H,et al. Time-dependent reachability analysis:a data-driven approach[C]//Proceedings of the 20th IEEE International Conference on Mobile Data Management. Piscataway:IEEE,2019:138-143. [18] WU G,DING Y,LI Y,et al. Mining spatio-temporal reachable regions over massive trajectory data[C]//Proceedings of the IEEE 33rd International Conference on Data Engineering. Piscataway:IEEE,2017:1283-1294. [19] YUAN J,ZHENG Y,ZHANG C,et al. An interactive-voting based map matching algorithm[C]//Proceedings of the 11th International Conference on Mobile Data Management. Piscataway:IEEE,2010:43-52. [20] 柴华骏, 李瑞敏, 郭敏. 基于车牌识别数据的城市道路旅行时间分布规律及估计方法研究[J]. 交通运输系统工程与信息, 2012,12(6):41-47.(CHAI H J,LI R M,GUO M. Travel time distribution and estimation of urban traffic using vehicle identification data[J]. Journal of Transportation Systems Engineering and Information Technology,2012,12(6):41-47.) [21] CHEN P, TONG R, LU G, et al. Exploring travel time distribution and variability patterns using probe vehicle data:case study in Beijing[J]. Journal of Advanced Transportation,2018, 2018:No. 3747632. [22] SHANG J, ZHENG Y, TONG W, et al. Inferring gas consumption and pollution emission of vehicles throughout a city[C]//Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York:ACM,2014:1027-1036. [23] ZHENG Y,CAPRA L,WOLFSON O,et al. Urban computing:concepts,methodologies,and applications[J]. ACM Transactions on Intelligent Systems and Technology,2014,5(3):No. 38. [24] ZHENG Y. Urban Computing[M]. Cambridge:MIT Press, 2019:34-87. |