[1] ZHENG Y,CAPRA L,WOLFSON O,et al. Urban computing:concepts,methodologies,and applications[J]. ACM Transactions on Intelligent Systems and Technology,2014,5(3):No. 38. [2] LIU W,CUI P,NURMINEN J K,et al. Special issue on intelligent urban computing with big data[J]. Machine Vision and Applications,2017,28(7):675-677. [3] FANGER P O. Thermal comfort:analysis and applications in environmental engineering[J]. Thermal Comfort Analysis & Applications in Environmental Engineering,1972,3(3):225-240. [4] BU J U,KIM T Y,KIM I S,et al. Silicon-based thermal comfort sensing device[J]. Sensors and Actuators A:Physical,1996,54(1/2/3):468-471. [5] CHOW T T,FONG K F,GIVONI B,et al. Thermal sensation of Hong Kong people with increased air speed, temperature and humidity in air-conditioned environment[J]. Building and Environment,2010,45(10):2177-2183. [6] 刘永颉, 赵安军, 葛恒. 典型温带地区住宅热舒适度影响因素分析[J]. 工业控制计算机,2015,28(5):127-129.(LIU Y J, ZHAO A J,GE H. Analysis of factors influencing residential thermal comfort in typical temperate regions[J]. Industrial Control Computer,2015,28(5):127-129.) [7] CHAN S Y,CHAU C K. Development of artificial neural network models for predicting thermal comfort evaluation in urban parks in summer and winter[J]. Building and Environment,2019,164:No. 106364. [8] JOWKAR M,DE DEAR R,BRUSEY J. Influence of long-term thermal history on thermal comfort and preference[J]. Energy and Buildings,2020,210:No. 109685. [9] 高立新. 室内热舒适度智能预测器的研究[J]. 计算机测量与控制,2002,10(8):519-520,526.(GAO L X. Research on the intelligent predictor of indoor thermal comfort[J]. Computer Measurement and Control,2002,10(8):519-520,526.) [10] YUCE B,LI H,REZGUI Y,et al. Utilizing artificial neural network to predict energy consumption and thermal comfort level:an indoor swimming pool case study[J]. Energy and Buildings, 2014,80:45-56. [11] 侯赞, 陈德旺, 李焱. 基于集成模糊推理的列车运行舒适度评价方法及应用[J]. 铁路计算机应用,2012,21(7):4-7.(HOU Z, CHEN D W, LI Y. Comfort evaluation method and its application for train operation based on ensemble fuzzy reasoning[J]. Railway Computer Application,2012,21(7):4-7.) [12] MARVUGLIA A, MESSINEO A, NICOLOSI G. Coupling a neural network temperature predictor and a fuzzy logic controller to perform thermal comfort regulation in an office building[J]. Building and Environment,2014,72:287-299. [13] 潘伟强, 李长云, 胡盛龙. 基于支持向量机的室内舒适度评价方法[J]. 计算机技术与发展,2013,23(6):214-218.(PAN W Q,LI C Y,HU S L. Indoor comfort evaluation method based on support vector machine[J]. Computer Technology and Development,2013,23(6):214-218.) [14] 杨福迈. 寒冷地区民用建筑温度舒适度评价设计仿真[J]. 计算机仿真,2017,34(8):445-448.(YANG F M. Design and simulation of temperature comfort evaluation for civil buildings in cold regions[J]. Computer Simulation,2017,34(8):445-448.) [15] 张玲, 王玲, 吴桐. 基于改进的粒子群算法优化反向传播神经网络的热舒适度预测模型[J]. 计算机应用,2014,34(3):775-779.(ZHANG L,WANG L,WU T. Thermal comfort prediction model based on improved particle swarm optimization-back propagation neural network[J]. Journal of Computer Applications, 2014,34(3):775-779.) [16] 郭彤颖, 陈露. 基于鸟群算法优化BP神经网络的热舒适度预测[J]. 计算机系统应用,2018,27(4):162-166.(GUO T Y, CHEN L. Thermal comfort prediction analysis based on BP neural network optimized by bird swarm algorithm[J]. Computer Systems and Applications,2018,27(4):162-166.) [17] SALAMONE F,BELUSSI L,CURRÒ C,et al. Integrated method for personal thermal comfort assessment and optimization through users' feedback,IoT and machine learning:a case study[J]. Sensors,2018,18(5):No. 1602. [18] GUENTHER J,SAWODNY O. Feature selection and Gaussian process regression for personalized thermal comfort prediction[J]. Building and Environment,2019,148:448-458. [19] JI Y, WANG Z. Thermal adaptations and logistic regression analysis of thermal comfort in severe cold area based on two case studies[J]. Energy and Buildings,2019,205:No. 109560. [20] WANG Z,WANG J,HE Y,et al. Dimension analysis of subjective thermal comfort metrics based on ASHRAE Global Thermal Comfort Database using machine learning[J]. Journal of Building Engineering,2019,29:No. 101120. [21] MUI K W,TSANG T W,WONG L T. Bayesian updates for indoor thermal comfort models[J]. Journal of Building Engineering, 2020,29:No. 101117. [22] LUO M,XIE J,YAN Y,et al. Comparing machine learning algorithms in predicting thermal sensation using ASHRAE Comfort Database Ⅱ[J]. Energy and Buildings,2020,210:No. 109776. [23] NGARAMBE J,YUN G Y,SANTAMOURIS M. The use of Artificial Intelligence(AI)methods in the prediction of thermal comfort in buildings:energy implications of AI-based thermal comfort controls[J]. Energy and Buildings, 2020, 211:No. 109807. [24] KIKEGAWA Y,GENCHI Y,KONDO H,et al. Impacts of cityblock-scale countermeasures against urban heat-island phenomena upon a building's energy-consumption for air-conditioning[J]. Applied Energy,2006,83(6):649-668. [25] LI C, ZHOU J, CAO Y, et al. Interaction between urban microclimate and electric air-conditioning energy consumption during high temperature season[J]. Applied Energy,2014,117:149-156. [26] 杨世忠, 任庆昌. 基于空调大系统优化的冷却水系统能耗仿真[J]. 计算机仿真,2016,33(1):348-352.(YANG S Z,REN Q C. Energy consumption simulation of cooling water system based on large scale system optimization of air conditioning systems[J]. Computer Simulation,2016,33(1):348-352.) [27] JIM C Y. Air-conditioning energy consumption due to green roofs with different building thermal insulation[J]. Applied Energy, 2014,128:49-59. [28] YUAN L,KANG Y,WANG S,et al. Effects of thermal insulation characteristics on energy consumption of buildings with intermittently operated air-conditioning systems under real time varying climate conditions[J]. Energy and Buildings,2017,155:559-570. [29] MA Z,SONG J,ZHANG J. Energy consumption prediction of airconditioning systems in buildings by selecting similar days based on combined weights[J]. Energy and Buildings,2017,151:157-166. [30] ZHOU X,YAN D,AN J,et al. Comparative study of airconditioning energy use of four office buildings in China and USA[J]. Energy and Buildings,2018,169:344-352. [31] ATTHAJARIYAKUL S, LEEPHAKPREEDA T. Real-time determination of optimal indoor-air condition for thermal comfort, air quality and efficient energy usage[J]. Energy and Buildings, 2004,36(7):720-733. [32] ATTHAJARIYAKUL S, LEEPHAKPREEDA T. Neural computing thermal comfort index for HVAC systems[J]. Energy Conversion and Management,2005,46(15/16):2553-2565. [33] WEI X,KUSIAK A,LI M,et al. Multi-objective optimization of the HVAC (heating,ventilation,and air conditioning) system performance[J]. Energy,2015,83:294-306. [34] ZHENG Z,LI J. Optimal chiller loading by improved invasive weed optimization algorithm for reducing energy consumption[J]. Energy and Buildings,2018,161:80-88. [35] 段冠囡, 王岳人. 超高层建筑暖通空调能耗精准预测仿真[J]. 计算机仿真,2018,35(12):317-320,379.(DUAN G N, WANG Y R. Simulation of HVAC energy consumption prediction for super high-rise building[J]. Computer Simulation,2018,35(12):317-320,379.) [36] 钱青, 唐桂忠, 张广明, 等. 基于AR-DBN的建筑分项能耗短期预测[J]. 计算机工程,2019,45(6):290-296.(QIAN Q,TANG G Z,ZHANG G M,et al. Short term prediction of itemized building energy consumption based on AR-DBN[J]. Computer Engineering,2019,45(6):290-296.) [37] TRAN D H, LUONG D L, CHOU J S. Nature-inspired metaheuristic ensemble model for forecasting energy consumption in residential buildings[J]. Energy,2020,191:No. 116552. [38] 魏峥, 王碧玲. 基于机器学习的冷水机组能耗模型辨识方法研究[J]. 建筑科学,2018,34(6):115-122(WEI Z,WANG B L. Characteristic analysis and case study of energy saving uncertainty model for heating system retrofit projects[J]. Architecture Science,2018,34(6):115-122).) [39] ZHOU C,FANG Z,XU X,et al. Using long short-term memory networks to predict energy consumption of air-conditioning systems[J]. Sustainable Cities and Society,2020,55:No. 102000. [40] FANGER P O. Assessment of man's thermal comfort in practice[J]. Occupational and Environmental Medicine,1973,30(4):313-324. [41] 熊伟成, 夏光义, 黎强, 等. 某办公建筑热舒适及能耗的正交法优化[J]. 西南师范大学学报(自然科学版),2018,43(8):116-120. (XIONG W C,XIA G Y,LI Q,et al. Optimization of thermal comfort and energy consumption in an office building in orthogonal method[J]. Journal of Southwest China Normal University(Natural Science Edition),2018,43(8):116-120.) [42] HINTON G E, SALAKHUTDINOV R R. Reducing the dimensionality of data with neural networks[J]. Science,2006, 313(5786):504-507. [43] HAYKIN S. Neural Networks:A Comprehensive Foundation[M]. 3rd ed. Upper Saddle River:Prentice-Hall,1998. [44] SMOLA A J, SCHÖLKOPF B. A tutorial on support vector regression[J]. Statistics and Computing,2004,14(3):199-222. [45] KIANIFARD F. Book review of Applied linear regression models:2nd by NETER J,WASSERMAN W,KUTNER M H K[J]. Technometrics,1990,32(3):352-353. [46] HOERL A E, KENNARD R W. Ridge regression:biased estimation for nonorthogonal problems[J]. Technometrics,1970, 12(1):55-67. [47] ABRAMSON N, BRAVERMAN D, SEBESTYEN G. Pattern recognition and machine learning[J]. IEEE Transactions on Information Theory,1963,9(4):257-261. [48] YEH C H. Classification and regression trees[J]. Chemometrics and Intelligent Laboratory Systems,1991,12(1):95-96. [49] 许德祥. 统计模型中均方误差的区间估计[J]. 经济数学,1999(1):52-54.(XU D X. Interval estimation of mean square error in statistical model[J]. Economic Mathematics,1999(1):52-54.) [50] AGRESTI A. Applying R2-type measures to ordered categorical data[J]. Technometrics,1986,28(2):133-138. [51] GARCÍA S,FERNÁNDEZ A,LUENGO J,et al. Advanced nonparametric tests for multiple comparisons in the design of experiments in computational intelligence and data mining:experimental analysis of power[J]. Information Sciences,2010, 180(10):2044-2064. |