1 GAO J , LENG Z , QIN Y , et al . Short-term traffic flow forecasting model based on wavelet neural network[C] // Proceedings of the 25th Chinese Control and Decision Conference. Piscataway: IEEE, 2013:5081-5084.
2 WEI D , LIU H . An adaptive-margin support vector regression for short-term traffic flow forecast[J]. Journal of Intelligent Transportation Systems, 2013, 17(4):317-327.
3 AN Y , SONG Q , ZHAO X . Short-term traffic flow forecasting via echo state neural networks[C]// Proceedings of the 7th International Conference on Natural Computation. Piscataway: IEEE, 2011:844-847.
4 YANG Y , LU H . Short-term traffic flow combined forecasting model based on SVM[C]// Proceedings of the 2010 International Conference on Computational and Information Sciences. Piscataway: IEEE, 2010:262-265.
5 田瑞杰,张维石,翟华伟 . 基于时间序列与BP-ANN的短时交通流速度预测模型研究[J]. 计算机应用研究, 2019, 36(11):3262-3265. TIAN R J, ZHANG W S, ZHAI H W. Short-term traffic flow velocity prediction model based on time series and BP-ANN[J]. Application Research of Computers, 2019, 36(11):3262-3265.
6 ZHANG Y , ZHANG Y , HAGHANI A . A hybrid short-term traffic flow forecasting method based on spectral analysis and statistical volatility model[J]. Transportation Research Part C: Emerging Technologies, 2014, 43(Pt 1):65-78.
7 邢珊珊,谷远利,沈立杰,等 . 基于速度的城市快速路交通拥堵预测研究[J]. 交通信息与安全, 2016, 34(2):48-54. XING S S , GU Y L , SHEN L J , et al . A traffic congestion prediction model based on vehicle speed of urban expressways[J]. Journal of Transport Information and Safety, 2016, 34(2):48-54.
8 高为,陆百川,贠天鹂,等 . 基于时空特性和RBF神经网络的短时交通流预测[J]. 交通信息与安全, 2011, 29(1):16-19. GAO W , LU B C , YUN T L , et al . Short-term traffic flow forecasting based on spatiotemporal characteristics of traffic flow and RBF neural network[J]. Journal of Transport Information and Safety, 2011, 29(1):16-19.
9 邱世崇,陆百川,马庆禄,等 . 基于时空特性分析和数据融合的交通流预测[J]. 武汉理工大学学报(信息与管理工程版), 2015, 37(2):156-160. QIU S C , LU B C , MA Q L , et al . Traffic flow forecasting based on spatio-temporal characteristic analysis and data fusion[J]. Journal of Wuhan University of Technology (Information and Management Engineering), 2015, 37(2):156-160.
10 邹亮,徐建闽,朱玲湘 .基于融合技术的道路交通状态判别模型[J].清华大学学报(自然科学版),2007,47(Z2):1822-1825. (ZOU L, XU J M, ZHU L X. Traffic state classification model of travel times based on the fusion technique [J]. Journal of Tsinghua University(Science and Technology), 2007,47(Z2):1822-1825.)
11 OpenITS . OpenData公共服务平台[DB/OL]. [2019-11-03].http://www.openits.cn/openData2/746.jhtml. OpenITS. OpenData public service platform[DB/OL]. [2019-11-03].http://www.openits.cn/openData2/746.jhtml.
12 周志华 .机器学习[M].北京:清华大学出版社,2016:250-252. ZHOU Z H. Maching Learning [M]. Beijing: Tsinghua University Press, 2016:250-252.
13 万芳,黎光宇,贾宁,等 .短时交通流预测中的特征选择算法研究[J].交通运输系统工程与信息,2019,19(2):216-222. WAN F , LI G Y , JIA N , et al . Feature selection algorithm in short-time traffic flow prediction[J]. Journal of Transportation Systems Engineering and Information Technology, 2019,19(2):216-222. |