[1] WANG Y,DANG L,REN J. Forest fire image recognition based on convolutional neural network[J]. Journal of Algorithms and Computational Technology,2019,13:1-11. [2] 杨绪兵, 覃欣怡, 张福全. 基于样条的林火图像多阈值分割算法[J]. 计算机应用,2017,37(11):3157-3161,3167.(YANG X B, TAN X Y,ZHANG F Q. Forest fire image segmentation algorithm with adaptive threshold based on smooth spline function[J]. Journal of Computer Applications,2017,37(11):3157-3161,3167.) [3] 曹昀炀, 王涛. 耦合先验拉普拉斯坐标的半监督图像分割算法[J]. 计算机应用,2019,39(9):2695-2700.(CAO Y Y,WANG T. Semi-supervised image segmentation based on prior Laplacian coordinates[J]. Journal of Computer Applications,2019,39(9):2695-2700.) [4] 胡加鑫, 贾鹤鸣, 邢致恺, 等. 基于鲸鱼算法的森林火灾图像多阈值分割[J]. 森林工程,2018,34(4):70-74,95.(HU J X,JIA H M,XING Z K,et al. Multi threshold segmentation of forest fire image based on whale algorithm[J]. Forest Engineering,2018,34(4):70-74,95.) [5] 胡鑫, 程玉柱, 吴祎, 等. 长短期记忆网络的林火图像分割方法[J]. 中国农机化学报,2019,40(1):103-107.(HU X,CHENG Y Z,WU Y,et al. Forest fire image segmentation method based on long short-term memory network[J]. Journal of Chinese Agricultural Mechanization,2019,40(1):103-107.) [6] 程述立, 汪烈军, 秦继伟, 等. 群智能算法优化的结合熵的最大类间方差法与脉冲耦合神经网络融合的图像分割算法[J]. 计算机应用,2017,37(12):3528-3535,3553.(CHENG S L,WANG L J,QIN J W,et al. Image segmentation algorithm based on fusion of group intelligent algorithm optimized OTSU-entropy and pulse coupled neural network[J]. Journal of Computer Applications, 2017,37(12):3528-3535,3553.) [7] 谢亮. 基于信息熵和改进粒子群算法的医学图像分割方法研究[J]. 半导体光电,2016,37(6):894-898.(XIE L. Medical image segmentation method based on information entropy and improved particle swarm algorithm[J]. Semiconductor Optoelectronics, 2016,37(6):894-898.) [8] 石玲玉, 周宇, 程玉柱. 基于和声搜索优化的木材死节缺陷图像分割[J]. 木材加工机械,2019,30(5):32-35.(SHI L Y,ZHOU Y,CHENG Y Z. Wood dead knot defects image segmentation based on harmony search optimization[J]. Wood Processing Machinery,2019,30(5):32-35.) [9] YUE X,ZHANG H. Modified hybrid bat algorithm with genetic crossover operation and smart inertia weight for multilevel image segmentation[J]. Applied Soft Computing,2020,90:No. 106157. [10] YOUSRI D, ELAZIZ M A, MIRJALILI S. Fractional-order calculus-based flower pollination algorithm with local search for global optimization and image segmentation[J]. Knowledge-Based Systems,2020,197:No. 105889. [11] CHENG M Y,PRAYOGO D. Symbiotic organisms search:a new metaheuristic optimization algorithm[J]. Computers and Structures,2014,139:98-112. [12] TIZHOOSH H R. Opposition-based learning:a new scheme for machine intelligence[C]//Proceedings of the 2005 International Conference on Computational Intelligence for Modelling,Control and Automation/International Conference on Intelligent Agents, Web Technologies and Internet Commerce. Piscataway:IEEE, 2005:695-701. [13] GHAEMI M, ZABIHINPOUR Z, ASGARI Y. Computer simulation study of the Levy flight process[J]. Physica A:Statistical Mechanics and its Applications,2009,388(8):1509-1514. [14] PUN T. A new method for grey-level picture thresholding using the entropy of the histogram[J]. Signal Processing,1980,2(3):223-237. [15] 张新明, 张爱丽, 郑延斌, 等. 改进的最大熵阈值分割及其快速实现[J]. 计算机科学,2011,38(8):278-283.(ZHANG X M, ZHANG A L,ZHENG Y B,et al. Improved two-dimensional maximum entropy image thresholding and its fast recursive realization[J]. Computer Science,2011,38(8):278-283.) [16] ZHANG L,ZHANG L,MOU X,et al. FSIM:a feature similarity index for image quality assessment[J]. IEEE Transactions on Image Processing,2011,20(8):2378-2386. |