Journal of Computer Applications ›› 2022, Vol. 42 ›› Issue (12): 3847-3855.DOI: 10.11772/j.issn.1001-9081.2021101830
• Advanced computing • Previous Articles Next Articles
Xin YONG1, Yuelin GAO1,2(), Yahua HE1, Huimin WANG1
Received:
2021-10-27
Revised:
2021-12-08
Accepted:
2021-12-22
Online:
2021-12-31
Published:
2022-12-10
Contact:
Yuelin GAO
About author:
YONG Xin, born in 1998, M. S. candidate. Her research interests include intelligent optimization algorithm, intrusion detection.Supported by:
通讯作者:
高岳林
作者简介:
雍欣(1998—),女,宁夏中卫人,硕士研究生,主要研究方向:智能优化算法、入侵检测基金资助:
CLC Number:
Xin YONG, Yuelin GAO, Yahua HE, Huimin WANG. Improved firefly algorithm based on multi-strategy fusion[J]. Journal of Computer Applications, 2022, 42(12): 3847-3855.
雍欣, 高岳林, 赫亚华, 王惠敏. 多策略融合的改进萤火虫算法[J]. 《计算机应用》唯一官方网站, 2022, 42(12): 3847-3855.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2021101830
函数名称 | 描述 | 最优值 | 区间 |
---|---|---|---|
Sphere | |||
Griewank | |||
Zakharov | |||
Ackley | |||
Schwedel 1.2 | |||
Schwedel 2.22 | |||
Alpine | |||
Csendes |
Tab.1 Benchmark functions
函数名称 | 描述 | 最优值 | 区间 |
---|---|---|---|
Sphere | |||
Griewank | |||
Zakharov | |||
Ackley | |||
Schwedel 1.2 | |||
Schwedel 2.22 | |||
Alpine | |||
Csendes |
算法 | 参数设置 |
---|---|
PSO | |
GA | |
ABC[ | |
FA[ | |
LFFA[ | |
LMFA[ | |
ADIFA[ | |
LEEFA |
Tab.2 Parameter description
算法 | 参数设置 |
---|---|
PSO | |
GA | |
ABC[ | |
FA[ | |
LFFA[ | |
LMFA[ | |
ADIFA[ | |
LEEFA |
函数 | 算法 | 最优值 | 最差值 | 平均值 | 标准差 |
---|---|---|---|---|---|
PSO | 0.601 6 | 0.953 3 | 0.782 1 | 0.0916 7 | |
GA | 96.489 2 | 3.402 7E+02 | 1.939 2E+02 | 55.925 6 | |
ABC | 2.560 9 | 22.832 6 | 11.915 4 | 5.198 9 | |
FA | 443.110 3 | 616.453 3 | 20.357 1 | 33.456 9 | |
LFFA | 275.053 0 | 362.690 8 | 307.758 9 | 20.599 7 | |
LMFA | 2.644 5E-03 | 1.218 3E-02 | 7.386 9E-03 | 2.131 5E-03 | |
ADIFA | 211.305 2 | 328.964 0 | 277.181 3 | 29.006 0 | |
LEEFA | 7.702 5E-92 | 8.978 8E-81 | 2.9984E-82 | 1.6116E-81 | |
PSO | 0.026 8 | 0.686 6 | 0.127 8 | 0.181 8 | |
GA | 3.235 2 | 8.896 7 | 5.986 0 | 1.331 6 | |
ABC | 1.070 9 | 1.198 1 | 1.126 0 | 0.031 9 | |
FA | 12.774 2 | 18.444 2 | 15.857 3 | 1.329 3 | |
LFFA | 12.923 2 | 15.834 8 | 14.488 8 | 0.840 8 | |
LMFA | 0.139 0 | 0.262 4 | 0.202 2 | 0.027 0 | |
ADIFA | 11.459 9 | 15.227 3 | 13.846 0 | 0.889 0 | |
LEEFA | 1.357 8E-12 | 9.078 5E-05 | 6.5387E-06 | 1.9040E-05 | |
PSO | 0.749 2 | 1.429 7 | 1.177 5 | 0.142 4 | |
GA | 2.911 9E+02 | 8.349 8E+02 | 4.779 5E+02 | 1.069 4E+02 | |
ABC | 1.678 3E+02 | 2.940 2E+02 | 2.608 7E+02 | 25.118 1 | |
FA | 752.834 8 | 1.864 9E+08 | 5.319 0E+07 | 5.623 0E+07 | |
LFFA | 222.202 6 | 333.352 1 | 294.423 9 | 29.251 7 | |
LMFA | 0.173 8 | 0.283 3 | 0.236 0 | 0.031 3 | |
ADIFA | 272.045 4 | 345.551 0 | 303.445 3 | 22.611 3 | |
LEEFA | 1.8553E-08 | 1.0567E-06 | 1.3746E-07 | 3.1064E-06 | |
PSO | 1.259 3 | 1.659 3 | 1.516 7 | 0.091 8 | |
GA | 20.317 6 | 20.981 7 | 20.591 2 | 0.156 5 | |
ABC | 8.555 2 | 12.304 2 | 10.346 0 | 0.958 2 | |
FA | 20.186 2 | 20.475 5 | 20.377 3 | 0.064 0 | |
LFFA | 19.969 4 | 20.328 9 | 20.201 5 | 0.084 8 | |
LMFA | 17.964 1 | 18.854 4 | 18.587 3 | 0.192 8 | |
ADIFA | 19.841 7 | 20.324 3 | 20.162 9 | 0.117 3 | |
LEEFA | 4.1599E-06 | 1.8025E-04 | 1.0109E-04 | 3.8139E-05 | |
PSO | 0.805 7 | 1.488 8 | 1.080 3 | 0.150 3 | |
GA | 2.673 1E+02 | 9.398 7E+02 | 4.545 5E+02 | 1.424 6E+02 | |
ABC | 2.027 9E+02 | 2.986 6E+02 | 2.496 5E+02 | 26.644 5 | |
FA | 518.832 3 | 698.257 9 | 604.156 7 | 59.696 1 | |
LFFA | 326.442 1 | 433.324 8 | 394.616 5 | 28.355 5 | |
LMFA | 0.334 4 | 0.557 2 | 0.448 2 | 0.074 9 | |
ADIFA | 332.946 8 | 431.034 6 | 390.475 8 | 31.199 1 | |
LEEFA | 2.3705E-08 | 3.8520E-04 | 7.6522E-05 | 1.1365E-04 | |
PSO | 2.942 7 | 4.035 0 | 3.677 4 | 0.274 3 | |
GA | 31.455 0 | 56.055 9 | 42.588 9 | 7.137 9 | |
ABC | 5.717 2 | 9.794 1 | 7.922 9 | 0.959 5 | |
FA | 163.703 4 | 1.117 0E+05 | 1.178 7E+04 | 3.235 1E+04 | |
LFFA | 160.821 5 | 1.253 6E+05 | 2.286 7E+04 | 3.514 9E+04 | |
LMFA | 1.539 3 | 1.833 3 | 1.667 2 | 0.073 4 | |
ADIFA | 186.600 4 | 2.107 6E+04 | 7.895 6E+03 | 7 927.250 6 | |
LEEFA | 6.8203E-05 | 9.6604E-03 | 2.5304E-03 | 2.6075E-03 | |
PSO | 0.533 0 | 0.880 5 | 0.720 2 | 0.082 5 | |
GA | 19.826 7 | 39.879 9 | 28.431 4 | 5.386 3 | |
ABC | 2.592 5 | 5.048 8 | 4.075 1 | 0.521 5 | |
FA | 40.124 1 | 44.767 9 | 42.580 0 | 1.288 0 | |
LFFA | 34.955 0 | 41.131 8 | 37.923 9 | 1.545 2 | |
LMFA | 0.204 7 | 1.527 3 | 0.538 7 | 0.360 7 | |
ADIFA | 30.667 3 | 40.947 6 | 38.454 3 | 2.853 3 | |
LEEFA | 9.3186E-06 | 2.7447E-03 | 1.1964E-03 | 1.1168E-03 | |
PSO | 0.001 6 | 0.012 6 | 0.007 5 | 0.002 6 | |
GA | 0.005 3 | 0.296 4 | 0.065 2 | 0.056 4 | |
ABC | 4.106 3E-07 | 7.850 9E-05 | 1.474 2E-05 | 1.895 8E-05 | |
FA | 1.025 7E-08 | 2.243 8E-08 | 1.652 1E-08 | 4.633 3E-09 | |
LFFA | 1.397 9 | 1.832 9 | 1.531 6 | 0.178 5 | |
LMFA | 9.088 4E-11 | 1.417 0E-10 | 1.192 9E-10 | 1.869 1E-11 | |
ADIFA | 1.398 4 | 2.617 4 | 2.182 2 | 0.465 1 | |
LEEFA | 1.1859E-35 | 8.0342E-28 | 2.1270E-28 | 3.4160E-28 |
Tab. 3 Experimental results comparison of the proposed algorithm and other improved algorithms
函数 | 算法 | 最优值 | 最差值 | 平均值 | 标准差 |
---|---|---|---|---|---|
PSO | 0.601 6 | 0.953 3 | 0.782 1 | 0.0916 7 | |
GA | 96.489 2 | 3.402 7E+02 | 1.939 2E+02 | 55.925 6 | |
ABC | 2.560 9 | 22.832 6 | 11.915 4 | 5.198 9 | |
FA | 443.110 3 | 616.453 3 | 20.357 1 | 33.456 9 | |
LFFA | 275.053 0 | 362.690 8 | 307.758 9 | 20.599 7 | |
LMFA | 2.644 5E-03 | 1.218 3E-02 | 7.386 9E-03 | 2.131 5E-03 | |
ADIFA | 211.305 2 | 328.964 0 | 277.181 3 | 29.006 0 | |
LEEFA | 7.702 5E-92 | 8.978 8E-81 | 2.9984E-82 | 1.6116E-81 | |
PSO | 0.026 8 | 0.686 6 | 0.127 8 | 0.181 8 | |
GA | 3.235 2 | 8.896 7 | 5.986 0 | 1.331 6 | |
ABC | 1.070 9 | 1.198 1 | 1.126 0 | 0.031 9 | |
FA | 12.774 2 | 18.444 2 | 15.857 3 | 1.329 3 | |
LFFA | 12.923 2 | 15.834 8 | 14.488 8 | 0.840 8 | |
LMFA | 0.139 0 | 0.262 4 | 0.202 2 | 0.027 0 | |
ADIFA | 11.459 9 | 15.227 3 | 13.846 0 | 0.889 0 | |
LEEFA | 1.357 8E-12 | 9.078 5E-05 | 6.5387E-06 | 1.9040E-05 | |
PSO | 0.749 2 | 1.429 7 | 1.177 5 | 0.142 4 | |
GA | 2.911 9E+02 | 8.349 8E+02 | 4.779 5E+02 | 1.069 4E+02 | |
ABC | 1.678 3E+02 | 2.940 2E+02 | 2.608 7E+02 | 25.118 1 | |
FA | 752.834 8 | 1.864 9E+08 | 5.319 0E+07 | 5.623 0E+07 | |
LFFA | 222.202 6 | 333.352 1 | 294.423 9 | 29.251 7 | |
LMFA | 0.173 8 | 0.283 3 | 0.236 0 | 0.031 3 | |
ADIFA | 272.045 4 | 345.551 0 | 303.445 3 | 22.611 3 | |
LEEFA | 1.8553E-08 | 1.0567E-06 | 1.3746E-07 | 3.1064E-06 | |
PSO | 1.259 3 | 1.659 3 | 1.516 7 | 0.091 8 | |
GA | 20.317 6 | 20.981 7 | 20.591 2 | 0.156 5 | |
ABC | 8.555 2 | 12.304 2 | 10.346 0 | 0.958 2 | |
FA | 20.186 2 | 20.475 5 | 20.377 3 | 0.064 0 | |
LFFA | 19.969 4 | 20.328 9 | 20.201 5 | 0.084 8 | |
LMFA | 17.964 1 | 18.854 4 | 18.587 3 | 0.192 8 | |
ADIFA | 19.841 7 | 20.324 3 | 20.162 9 | 0.117 3 | |
LEEFA | 4.1599E-06 | 1.8025E-04 | 1.0109E-04 | 3.8139E-05 | |
PSO | 0.805 7 | 1.488 8 | 1.080 3 | 0.150 3 | |
GA | 2.673 1E+02 | 9.398 7E+02 | 4.545 5E+02 | 1.424 6E+02 | |
ABC | 2.027 9E+02 | 2.986 6E+02 | 2.496 5E+02 | 26.644 5 | |
FA | 518.832 3 | 698.257 9 | 604.156 7 | 59.696 1 | |
LFFA | 326.442 1 | 433.324 8 | 394.616 5 | 28.355 5 | |
LMFA | 0.334 4 | 0.557 2 | 0.448 2 | 0.074 9 | |
ADIFA | 332.946 8 | 431.034 6 | 390.475 8 | 31.199 1 | |
LEEFA | 2.3705E-08 | 3.8520E-04 | 7.6522E-05 | 1.1365E-04 | |
PSO | 2.942 7 | 4.035 0 | 3.677 4 | 0.274 3 | |
GA | 31.455 0 | 56.055 9 | 42.588 9 | 7.137 9 | |
ABC | 5.717 2 | 9.794 1 | 7.922 9 | 0.959 5 | |
FA | 163.703 4 | 1.117 0E+05 | 1.178 7E+04 | 3.235 1E+04 | |
LFFA | 160.821 5 | 1.253 6E+05 | 2.286 7E+04 | 3.514 9E+04 | |
LMFA | 1.539 3 | 1.833 3 | 1.667 2 | 0.073 4 | |
ADIFA | 186.600 4 | 2.107 6E+04 | 7.895 6E+03 | 7 927.250 6 | |
LEEFA | 6.8203E-05 | 9.6604E-03 | 2.5304E-03 | 2.6075E-03 | |
PSO | 0.533 0 | 0.880 5 | 0.720 2 | 0.082 5 | |
GA | 19.826 7 | 39.879 9 | 28.431 4 | 5.386 3 | |
ABC | 2.592 5 | 5.048 8 | 4.075 1 | 0.521 5 | |
FA | 40.124 1 | 44.767 9 | 42.580 0 | 1.288 0 | |
LFFA | 34.955 0 | 41.131 8 | 37.923 9 | 1.545 2 | |
LMFA | 0.204 7 | 1.527 3 | 0.538 7 | 0.360 7 | |
ADIFA | 30.667 3 | 40.947 6 | 38.454 3 | 2.853 3 | |
LEEFA | 9.3186E-06 | 2.7447E-03 | 1.1964E-03 | 1.1168E-03 | |
PSO | 0.001 6 | 0.012 6 | 0.007 5 | 0.002 6 | |
GA | 0.005 3 | 0.296 4 | 0.065 2 | 0.056 4 | |
ABC | 4.106 3E-07 | 7.850 9E-05 | 1.474 2E-05 | 1.895 8E-05 | |
FA | 1.025 7E-08 | 2.243 8E-08 | 1.652 1E-08 | 4.633 3E-09 | |
LFFA | 1.397 9 | 1.832 9 | 1.531 6 | 0.178 5 | |
LMFA | 9.088 4E-11 | 1.417 0E-10 | 1.192 9E-10 | 1.869 1E-11 | |
ADIFA | 1.398 4 | 2.617 4 | 2.182 2 | 0.465 1 | |
LEEFA | 1.1859E-35 | 8.0342E-28 | 2.1270E-28 | 3.4160E-28 |
1 | TIAN D P, SHI Z Z. MPSO: modified particle swarm optimization and its applications[J]. Swarm and Evolutionary Computation, 2018, 41:49-68. 10.1016/j.swevo.2018.01.011 |
2 | YANG K, YOU X M, LIU S, et al. A novel ant colony optimization based on game for traveling salesman problem[J]. Applied Intelligence, 2020, 50(12):4529-4542. 10.1007/s10489-020-01799-w |
3 | KOHLI M, ARORA S. Chaotic grey wolf optimization algorithm for constrained optimization problems[J]. Journal of Computational Design and Engineering, 2018, 5(4):458-472. 10.1016/j.jcde.2017.02.005 |
4 | ZHANG X M, KANG Q, CHENG J F, et al. A novel hybrid algorithm based on biogeography-based optimization and grey wolf optimizer [J]. Applied Soft Computing, 2018, 67: 197-214. 10.1016/j.asoc.2018.02.049 |
5 | YANG X S. Firefly algorithms for multimodal optimization[C]// Proceedings of the 2009 International Symposium on Stochastic Algorithms, LNCS 5792. Berlin: Springer, 2009: 169-178. |
6 | 何栎,姚青山,李鹏,等. 基于利维飞行和变异算子的萤火虫算法[J]. 计算机工程与设计, 2020, 41(5):1327-1335. |
HE L, YAO Q S, LI P, et al. Levy flight and mutation operator based firefly algorithm[J]. Computer Engineering and Design, 2020, 41(5):1327-1335. | |
7 | WU J R, WANG Y G, BURRAGE K, et al. An improved firefly algorithm for global continuous optimization problems[J]. Expert Systems with Applications, 2020, 149: No.113340. 10.1016/j.eswa.2020.113340 |
8 | WANG C F, SONG W X. A novel firefly algorithm based on gender difference and its convergence[J]. Applied Soft Computing, 2019, 80:107-124. 10.1016/j.asoc.2019.03.010 |
9 | YELGHI A, KÖSE C. A modified firefly algorithm for global minimum optimization[J]. Applied Soft Computing, 2018, 62:29-44. 10.1016/j.asoc.2017.10.032 |
10 | 刘振,鲁华杰,任建存. 一种多样性增强的混合萤火虫算法[J]. 山西大学学报(自然科学版), 2021, 44(2):249-256. 10.13451/j.sxu.ns.2020034 |
LIU Z, LU H J, REN J C. A diversity-enhanced hybrid firefly algorithm[J]. Journal of Shanxi University (Natural Science Edition), 2021, 44(2):249-256. 10.13451/j.sxu.ns.2020034 | |
11 | 刘磊,罗蓉,尹胜. 基于精英个体划分的变步长萤火虫算法的特征选择方法[J]. 重庆邮电大学学报(自然科学版), 2020, 32(2):313-321. |
LIU L, LUO R, YIN S. Feature selection method based on the dynamic step firefly algorithm with the elite individual dipartition[J]. Journal of Chongqing University of Posts and Telecommunications (Natural Science Edition), 2020, 32(2): 313-321. | |
12 | YAN B L, ZHAO Z, ZHOU Y C, et al. A particle swarm optimization algorithm with random learning mechanism and Levy flight for optimization of atomic clusters[J]. Computer Physics Communications, 2017, 219:79-86. 10.1016/j.cpc.2017.05.009 |
13 | PATHAK Y, ARYA K V, TIWARI S. Feature selection for image steganalysis using Levy flight-based grey wolf optimization[J]. Multimedia Tools and Applications, 2019, 78(2): 1473-1494. 10.1007/s11042-018-6155-6 |
14 | BARSHANDEH S, HAGHZADEH M. A new hybrid chaotic atom search optimization based on tree-seed algorithm and Levy flight for solving optimization problems[J]. Engineering with Computers, 2021, 37(4): 3079-3122. 10.1007/s00366-020-00994-0 |
15 | YANG X S. Firefly Algorithm, Lévy flights and global optimization[M]// BRAMER M, ELLIS R, PETRIDIS M. Research and Development in Intelligent Systems XXVI: Incorporating Applications and Innovations in Intelligent Systems XVII. London: Springer, 2010:209-218. 10.1007/978-1-84882-983-1_15 |
16 | TIZHOOSH H R. Opposition-based learning: a new scheme for machine intelligence[C]// Proceedings of the 2005 International Conference on Computational Intelligence for Modelling, Control and Automation and International Conference on Intelligent Agents, Web Technologies and Internet Commerce. Piscataway: IEEE, 2005:695-701. 10.1109/cimca.2005.1631428 |
17 | SIHWAIL R, OMAR K, ARIFFIN K A Z, et al. Improved Harris hawks optimization using elite opposition-based learning and novel search mechanism for feature selection[J]. IEEE Access, 2020, 8: 121127-121145. 10.1109/access.2020.3006473 |
18 | 郭雨鑫,刘升,高文欣,等. 精英反向学习与黄金正弦优化的HHO算法[J]. 计算机工程与应用, 2022, 58(10):153-161. 10.3778/j.issn.1002-8331.2011-0321 |
GUO Y X, LIU S, GAO W X, et al. Elite opposition-based learning golden-sine Harris hawks optimization[J]. Computer Engineering and Applications, 2022, 58(10):153-161. 10.3778/j.issn.1002-8331.2011-0321 | |
19 | EWEES A A, ELAZIZ M A, HOUSSEIN E H. Improved grasshopper optimization algorithm using opposition-based learning[J]. Expert Systems with Applications, 2018, 112: 156-172. 10.1016/j.eswa.2018.06.023 |
20 | JAMIL M, YANG X S. A literature survey of benchmark functions for global optimisation problems[J]. Journal of Mathematical Modeling and Numerical Optimisation, 2013, 4(2): 150-194. 10.1504/ijmmno.2013.055204 |
21 | KARABOGA D, AKAY B. A comparative study of Artificial Bee Colony algorithm[J]. Applied Mathematics and Computation, 2009, 214(1):108-132. 10.1016/j.amc.2009.03.090 |
[1] | Yun OU, Kaiqing ZHOU, Pengfei YIN, Xuewei LIU. Improved grey wolf optimizer algorithm based on dual convergence factor strategy [J]. Journal of Computer Applications, 2023, 43(9): 2679-2685. |
[2] | Zhihui GAO, Meng HAN, Shujuan LIU, Ang LI, Dongliang MU. Survey of high utility itemset mining methods based on intelligent optimization algorithm [J]. Journal of Computer Applications, 2023, 43(6): 1676-1686. |
[3] | Zhongrui QIU, Hong MIAO, Chengbi ZENG. Improved slime mould algorithm with multi-strategy fusion [J]. Journal of Computer Applications, 2023, 43(3): 812-819. |
[4] | Jun CHEN, Qing HE, Shouyu LI. Archimedes optimization algorithm based on golden Levy guidance mechanism [J]. Journal of Computer Applications, 2022, 42(9): 2807-2815. |
[5] | JIA Heming, LI Yao, JIANG Zichao, SUN Kangjian. Multi-threshold segmentation of forest fire images based on modified symbiotic organisms search algorithm [J]. Journal of Computer Applications, 2021, 41(5): 1465-1470. |
[6] | LIU Xiaoming, SHEN Mingyu, HOU Zhengfeng. Firefly fuzzy clustering algorithm based on Levy flight [J]. Journal of Computer Applications, 2019, 39(11): 3257-3262. |
[7] | ZHANG Xinming, WANG Doudou, CHEN Haiyan, MAO Wentao, DOU Zhi, LIU Shangwang. Best and worst coyotes strengthened coyote optimization algorithm and its application to quadratic assignment problem [J]. Journal of Computer Applications, 2019, 39(10): 2985-2991. |
[8] | ZHANG Xinming, KANG Qiang, WANG Xia, CHENG Jinfeng. Particle swarm optimization algorithm with cross opposition learning and particle-based social learning [J]. Journal of Computer Applications, 2017, 37(11): 3194-3200. |
[9] | FU Qiang, GE Hongwei, SU Shuzhi. Particle swarm optimization algorithm with firefly behavior and Levy flight [J]. Journal of Computer Applications, 2016, 36(12): 3298-3302. |
[10] | ZHANG Qiantu, FANG Liqing, ZHAO Yulong. Double subgroups fruit fly optimization algorithm with characteristics of Levy flight [J]. Journal of Computer Applications, 2015, 35(5): 1348-1352. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||