[1] MOUSAVI E A,MALLER J J,FITZGERALD P B,et al. Wavelet common spatial pattern in asynchronous offline brain computer interfaces[J]. Biomedical Signal Processing and Control,2011,6(2):121-128. [2] ANG K K,CHIN Z Y,WANG C,et al. Filter bank common spatial pattern algorithm on BCI Competition IV datasets 2a and 2b[J]. Frontiers in Neuroscience,2012,6:No. 39. [3] RAHMAN M H, RAHMAN M J, CRISTOBAL O L, et al. Development of a whole arm wearable robotic exoskeleton for rehabilitation and to assist upper limb movements[J]. Robotica, 2015,33(1):19-39. [4] VAN DE LAAR B,REUDERINK B,BOS D P O,et al. Evaluating user experience of actual and imagined movement in BCI gaming[J]. International Journal of Gaming and Computer-Mediated Simulations,2010,2(4):33-47. [5] ZHANG Y,WANG Y,JIN J,et al. Sparse Bayesian learning for obtaining sparsity of EEG frequency bands based feature vectors in motor imagery classification[J]. International Journal of Neural Systems,2017,27(2):No. 1650032. [6] YANG B,LI H,WANG Q,et al. Subject-based feature extraction by using fisher WPD-CSP in brain-computer interfaces[J]. Computer Methods and Programs in Biomedicine, 2016, 129:21-28. [7] KEVRIC J, SUBASI A. Comparison of signal decomposition methods in classification of EEG signals for motor-imagery BCI system[J]. Biomedical Signal Processing and Control,2017,31:398-406. [8] BAIG M Z,ASLAM N,SHUM H P H,et al. Differential evolution algorithm as a tool for optimal feature subset selection in motor imagery EEG[J]. Expert Systems with Applications,2017,90:184-195. [9] SCHIRRMEISTER R T,SPRINGENBERG J T,FIEDERER L D J, et al. Deep learning with convolutional neural networks for EEG decoding and visualization[J]. Human Brain Mapping,2017,38(11):5391-5420. [10] 张顺, 龚怡宏, 王进军. 深度卷积神经网络的发展及其在计算机视觉领域的应用[J]. 计算机学报,2019,42(3):453-482. (ZHANG S,GONG Y H,WANG J J. The development of deep convolution neural network and its applications on computer vision[J]. Chinese Journal of Computers,2019,42(3):453-482.) [11] 王文冠, 沈建冰, 贾云得. 视觉注意力检测综述[J]. 软件学报, 2019,30(2):416-439.(WANG W G,SHEN J B,JIA Y D. Review of visual attention detection[J]. Journal of Software, 2019,30(2):416-439.) [12] 张一彬, 周杰, 边肇祺, 等. 基于内容的音频与音乐分析综述[J]. 计算机学报,2007,30(5):712-728.(ZHANG Y B,ZHOU J,BIAN Z Q,et al. A review of content-based audio and music analysis[J]. Chinese Journal of Computers, 2007, 30(5):712-728.) [13] 韩文静, 李海峰, 阮华斌, 等. 语音情感识别研究进展综述[J]. 软件学报,2014,25(1):37-50.(HAN W J,LI H F,RUAN H B,et al. Review on speech emotion recognition[J]. Journal of Software,2014,25(1):37-50.) [14] TABAR Y R,HALICI U. A novel deep learning approach for classification of EEG motor imagery signals[J]. Journal of Neural Engineering,2017,14(1):No. 016003. [15] TANG Z,LI C,SUN S. Single-trial EEG classification of motor imagery using deep convolutional neural networks[J]. Optik, 2017,130:11-18. [16] LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE,1998,86(11):2278-2324. [17] BOUSQUET O. New approaches to statistical learning theory[J]. Annals of the Institute of Statistical Mathematics,2003,55(2):371-389. [18] PFURTSCHELLER G,NEUPER C,BRUNNER C,et al. Beta rebound after different types of motor imagery in man[J]. Neuroscience Letters,2005,378(3):156-159. [19] PFURTSCHELLER G, NEUPER C, BERGER J. Source localization using Event-Related Desynchronization(ERD)within the alpha band[J]. Brain Topography,1994,6(4):269-275. [20] PADFIELD N,ZABALZA J,ZHAO H,et al. EEG-based braincomputer interfaces using motor-imagery:techniques and challenges[J]. Sensors,2019,19(6):No. 1434. [21] SRIVASTAVA N, HINTON G, KRIZHEVSKY A, et al. Dropout:a simple way to prevent neural networks from overfitting[J]. The Journal of Machine Learning Research,2014,15(1):1929-1958. [22] KUMAR S, SHARMA A, TSUNODA T. An improved discriminative filter bank selection approach for motor imagery EEG signal classification using mutual information[J]. BMC Bioinformatics,2017,18(S16):No. 545. [23] RODRÍGUEZ-BERMÚDEZ G, GARCÍA-LAENCINA P J. Automatic and adaptive classification of electroencephalographic signals for brain computer interfaces[J]. Journal of Medical Systems,2012,36(S1):51-63. [24] ZHOU J, MENG M, GAO Y, et al. Classification of motor imagery EEG using wavelet envelope analysis and LSTM networks[C]//Proceedings of the 2018 Chinese Control and Decision Conference. Piscataway:IEEE,2018:5600-5605. [25] ZHANG H,CISSE M,DAUPHIN Y N,et al. mixup:beyond empirical risk minimization[EB/OL].[2020-04-16]. https://arxiv.org/pdf/1710.09412.pdf. [26] CHAPELLE O,WESTON J,BTTTOU L,et al. Vicinal risk minimization[C]//Proceedings of the 13th International Conference on Neural Information Processing Systems. MIT Press, 2000:395-401. |