[1] 邓书斌, 陈秋锦, 杜会建, 等. ENVI遥感图像处理方法[M]. 2版. 北京:高等教育出版社,2014:407-424. (DENG S B,CHEN Q J,DU H J,et al. ENVI Remote Sensing Image Processing Method[M]. 2nd ed. Beijing:Higher Education Press,2014:407-424.) [2] FRANKLIN S E,AHMED O S,WULDER M A,et al. Large area mapping of annual land cover dynamics using multitemporal change detection and classification of Landsat time series data[J]. Canadian Journal of Remote Sensing,2015,41(4):293-314. [3] HOCHREITER S,SCHMIDHUBER J. Long short-term memory[J]. Neural Computation,1997,9(8):1735-1780. [4] 林蕾. 基于循环神经网络模型的遥感影像时间序列分类及变化检测方法研究[D]. 北京:中国科学院大学,2018:45-74. (LIN L. Remote sensing image time series classification and change detection based on recurrent neural network model[D]. Beijing:University of Chinese Academy of Sciences,2018:45-74.) [5] MAGGIORI E, TARABALKA Y, CHARPIAT G, et al. Convolutional neural networks for large-scale remote-sensing image classification[J]. IEEE Transactions on Geoscience and Remote Sensing,2017,55(2):645-657. [6] POSTADJIAN T,LE BRIS A,SAHBI H,et al. Investigating the potential of deep neural networks for large-scale classification of very high resolution satellite images[J]. ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences,2017,IV-1/W1:183-190. [7] VOLPI M,TUIA D. Dense semantic labeling of subdecimeter resolution images with convolutional neural networks[J]. IEEE Transactions on Geoscience and Remote Sensing,2017,55(2):881-893. [8] AUDEBERT N, LE SAUX B, LEFÈVRE S. Segment-beforedetect:vehicle detection and classification through semantic segmentation of aerial images[J]. Remote Sensing,2017,9(4):No. 368. [9] ZHANG Q,YUAN Q,ZENG C,et al. Missing data reconstruction in remote sensing image with a unified spatial-temporal-spectral deep convolutional neural network[J]. IEEE Transactions on Geoscience and Remote Sensing,2018,56(8):4274-4288. [10] ZHONG L,HU L,ZHOU H. Deep learning based multi-temporal crop classification[J]. Remote Sensing of Environment,2019, 221:430-443. [11] HU W,HUANG Y,WEI L,et al. Deep convolutional neural networks for hyperspectral image classification[J]. Journal of Sensors,2015,2015:No. 258619. [12] WANG Z,YAN W,OATES T. Time series classification from scratch with deep neural networks:a strong baseline[C]//Proceedings of the 2017 International Joint Conference on Neural Networks. Piscataway:IEEE,2017:1578-1585. [13] CUI Z,CHEN W,CHEN Y. Multi-scale convolutional neural networks for time series classification[EB/OL].[2016-05-11]. https://arxiv.org/pdf/1603.06995.pdf. [14] DI MAURO N,VERGARI A,BASILE T M A,et al. End-to-end learning of deep spatio-temporal representations for satellite image time series classification[C]//Proceedings of the 2017 European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases. Berlin:Springer, 2017:18-22. [15] DINO I. TiSeLaC:time series land cover classification challenge[EB/OL].[2020-05-24]. https://dimartinot.com/notebooks/tiselac/. [16] ZHENG Y,LIU Q,CHEN E,et al. Exploiting multi-channels deep convolutional neural networks for multivariate time series classification[J]. Frontiers of Computer Science,2016,10(1):96-112. [17] ZHAO B,LU H,CHEN S,et al. Convolutional neural networks for time series classification[J]. Journal of Systems Engineering and Electronics,2017,28(1):162-169. [18] 蔡涛, 王润生. 一个从多波段遥感图像提取道路网的算法[J]. 软件学报,2001,12(6):943-948.(CAI T,WANG R S. An algorithm for extracting road network from multi band remote sensing images[J]. Journal of software,2001,12(6):943-948.) [19] European Environment Agency. CORINE Land Cover[EB/OL].[2020-05-22]. https://www.eea.europa.eu/publications/COR0-landcover. |