[1] SHELHAMER E,LONG J,DARRELL T. Fully convolutional networks for semantic segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(4):640-651. [2] RONNEBERGER O,FISCHER P,BROX T. U-Net:convolutional networks for biomedical image segmentation[C]//Proceedings of the 2015 International Conference on Medical Image Computing and Computer-Assisted Intervention, LNCS 9351. Cham:Springer, 2015:234-241. [3] OKTAY O,SCHLEMPER J,LE FOLGOC L,et al. Attention UNet:learning where to look for the pancreas[EB/OL].[2020-07-13]. https://arxiv.org/pdf/1804.03999.pdf. [4] HE K,ZHANG X,REN S,et al. Deep residual learning for image recognition[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2016:770-778. [5] HUANG G, LIU Z, VAN DER MAATEN L, et al. Densely connected convolutional networks[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2017:2261-2269. [6] CHEN L C,PAPANDREOU G,KOKKINOS I,et al. Semantic image segmentation with deep convolutional nets and fully connected CRFs[EB/OL].[2020-07-21]. https://arxiv.org/pdf/1412.7062.pdf. [7] ZHOU Z,RAHMAN SIDDIQUEE M M,TAIBAKHSH N,et al. UNet++:a nested U-Net architecture for medical image segmentation[C]//Proceedings of the 2018 International Workshop on Deep Learning in Medical Image Analysis/International Workshop on Multimodal Learning for Clinical Decision Support, LNCS 11045. Cham:Springer,2018:3-11. [8] CHEN Y,FAN H,XU B,et al. Drop an octave:reducing spatial redundancy in convolutional neural networks with octave convolution[C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. Piscataway:IEEE,2019:3434-3443. [9] VASWANI A,SHAZEER N,PARMAR N,et al. Attention is all you need[C]/Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook:Curran Associates Inc.,2017:6000-6010. [10] HE K,GKIOXARI G,DOLLÁR P,et al. Mask R-CNN[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway:IEEE,2017:2980-2988. [11] HU J,SHEN L,SUN G. Squeeze-and-excitation networks[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2018:7132-7141. [12] WOO S,PARK J,LEE J Y,et al. CBAM:convolutional block attention module[C]//Proceedings of the 2018 European Conference on Computer Vision,LNCS 11211. Cham:Springer, 2018:3-19. [13] PARK J,WOO S,LEE J Y,et al. BAM:bottleneck attention module[C]//Proceedings of the 2018 British Machine Vision Conference. Durham:BMVA Press,2018:Article No. 92. [14] ABRAHAM N,KHAN N M. A novel focal Tversky loss function with improved attention U-Net for lesion segmentation[C]//Proceedings of the 2019 IEEE 16th International Symposium on Biomedical Imaging. Piscataway:IEEE,2019:683-687. [15] JADON S. A survey of loss functions for semantic segmentation[EB/OL].[2020-12-01]. https://arxiv.org/pdf/2006.14822.pdf. [16] 叶海, 冯开平, 谢红宁. 基于全卷积网络的胎儿脑部超声图像分割算法[J]. 现代计算机, 2019(17):51-54.(YE H,FENG K P, XIE H N. Fetal brain ultrasound image segmentation algorithm based on fully convolution network[J]. Modern Computer,2019(17):51-54.) [17] 张耀楠, 李显, 宋谦, 等. 基于超声序列图像的心脏四腔运动同步特性提取[J]. 北京生物医学工程, 2016, 35(5):455-463. (ZHANG Y N, LI X, SONG Q, et al. Extraction of synchronization characteristics of heart's four-chamber motion based on ultrasound sequence images[J]. Beijing Biomedical Engineering,2016,35(5):455-463.) [18] 蒋建慧, 姚静, 张艳娟, 等. 基于深度学习的超声自动测量左室射血分数的研究[J]. 临床超声医学杂志, 2019, 21(1):70-74. (JIANG J H,YAO J,ZHANG Y J,et al. Study on automatic measurement of left ventricular ejection fraction with ultrasound based on deep learning[J]. Journal of Clinical Ultrasound in Medicine,2019,21(1):70-74.) [19] 夏黎明, 沈坚, 张荣国, 等. 深度学习技术在医学影像领域的应用[J]. 协和医学杂志, 2018, 9(1):10-14.(XIA L M,SHEN J, ZHANG R G,et al. Application of deep learning technology in medical imaging research[J]. Medical Journal of Peking Union Medical College Hospital,2018,9(1):10-14.) |